

June 7, 2023

STRUCTURAL CALCULATIONS (Permit Submittal)

HONG AND KAO RESIDENCE

5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

Prepared for: CHESMORE BUCK ARCHITECTURE 27 100ath Avenue NE, Suite 100 Bellevue, WA 98004

Prepared by: QUANTUM CONSULTING ENGINEERS 1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900

QUANTUM CONSULTING ENGINEERS

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

HONG AND KAO RESIDENCE

5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

TABLE OF CONTENTS

DESIGN CRITERIA	
GRAVITY DESIGN – MAIN HOUSE	10
LATERAL DESIGN – MAIN HOUSE	134
FOUNDATION DESIGN – MAIN HOUSE	173
GRAVITY DESIGN – DADU	182
LATERAL DESIGN – DADU	198
FOUNDATION DESIGN – DADU	

Quantum Job Number: 23127.01

DESIGN CRITERIA

Structural Design Criteria

Building Code:2018 International Building CodeBuilding Department:City of Mercer Island							
$\begin{tabular}{ c c c c c c c } \hline Seismic Criteria \\ \hline S_s: 1.45 & I_e: 1.00 \\ \hline S_1: 0.51 & Seismic Soil Site Class: D \\ \hline S_{ds}: 0.97 & Seismic Design Category: D \\ \hline S_{d1}: 0.61 & Cs: 0.15 \\ \hline R: 6.50 & Light-Framed Wood Walls Sheathed With Wood Walls Sheathed Walls Sheath$	Wind Criteria Wind Speed: 97 MPH Risk Category: II Wind Exposure: C Kzt: 1.0 Structural Panels						
Geotechnical Criteria							
Allowable Bearing Pressure Minimum Footing Width Frost Depth Soils Consultant Soils Report Number Soils Report Date Active Soil Pressure (Restrained/Unrestrained) Seismic Surcharge Pressure (Restrained/Unrestrained) Passive Soil Pressure Coefficient of Friction	2000 PSF Continuous: 16" min., Isolated: 24" min. 18" min. GEO Group Northwest, Inc. #G-5881 May 20, 2023 50 PCF / 35 PCF 8H PSF / 6H PSF 350 PCF 0.35						
<u>Materials Criteria</u> Concrete (28 Day Strength): Foundation/Slab on Grade Basement Walls	F'c= 2,500 PSI F'c= 3,000 PSI						
Reinforcing Steel: Grade 60 (#5 bar and larger) Grade 40 (#4 bar)	Fy= 60,000 PSI Fy= 40,000 PSI						
Structural Steel: Wide-Flange Sections: A-992 Miscellaneous Sections: A-36 Tube Sections: A-500 Pipe Sections: A-53 Welding	Fy= 50,000 PSI Fy= 36,000 PSI Fy= 46,000 PSI Fy= 35,000 PSI Fy= 70,000 PSI						
Wood Framing: 2x, 3x & 4x Framing Members 6x Framing Members Glulam Beams LSL Members - Beams & Headers LVL Members - Beams & Headers Wood Sheathing	HF#2 or DF#2 DF#1 24F-V4 (V8 @ Cont. and Cant. Members) 1.55 E LSL 1.9 E LVL APA RATED						

Quantum Consulting Engineers LLC Project: Hong & Kao R		Project: Hong & Kao Residence	Date:	6/7/23	Job No:	23127.01
	1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	1
	Seattle, WA 98101	Client: Chesmore Buck	Checked By:			

Residential Building Loads

Snow Load	Roof	25 psf
Live Load	Residential	40 psf
	Residential exterior decks / balconies	60 psf

of + 5 psf Rain on Snow

Assembly Loads

Typical Roof Loads		Comments
Standard Roofing	4.0 psf	
1/2" Ply. Sheathing	1.5 psf	
Joists @ 24" o.c.	2.1 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
PV Allowance	5.0 psf	0.0 psf for seismic
Misc. + Sprinklers	3.1 psf	
Total:	20.0 psf	SL=30 psf

East Low Roof Loads	Comments	
Standard Roofing	4.0 psf	
1/2" Ply. Sheathing	1.5 psf	
Joists @ 24" o.c.	2.1 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
2" gravel	18.0 psf	
Misc. + Sprinklers	3.1 psf	
Total:	33.0 psf	SL=30 psf

Typical Floor Loads		Comments
Flooring	3.0 psf	
Sprinklers	3.0 psf	1.0 psf for seismic
3/4" Ply. Sheathing	2.3 psf	
Joists @ 16" o.c.	2.5 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.8 psf	
Miscellaneous	0.6 psf	
Partitons	-	
Total:	15.0 psf	LL=40 psf

Typical Deck Loads		Comments
Porcelain Ped. Pavers	9.0 psf	
Membrane Roofing	2.2 psf	
3/4" Ply. Sheathing	2.3 psf	
Joists @ 16" o.c.	2.5 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
Miscellaneous	1.7 psf	
Total:	22.0 psf	LL=60 psf

Exterior Wood Stud Wall				
Siding	2.3 psf			
1/2" Plywood	1.5 psf			
2x6 studs @ 16 " o.c.	1.7 psf			
Insulation	0.5 psf			
1/2" GWB	2.2 psf			
Mech./Elec.	0.5 psf			
Misc.	1.3 psf			
Total:	10.0 psf			

Interior Wall Fram	ing
5/8" GWB	2.8 psf
2x4 @ 16" o.c.	0.9 psf
5/8" GWB	2.8 psf
Mech./Elec.	0.5 psf
Misc.	1.0 psf
Т	otal: 8.0 psf

Exterior Wall with Veneer Exterior Finish 2.2 psf 1/2" Plywood 1.5 psf Studs @ 16 " o.c. 1.7 psf Insulation 0.5 psf 1/2" GWB 2.2 psf 0.5 psf Mech./Elec. 1.4 psf Misc. Veneer 38.0 psf Total: 48.0 psf

Deflection Criteria

						_	
Roof	Walls	L/120	*flexible finishes	Floor		-	
Live Load: L/240		L/240	*brittle finish	Live Load: L/480			
Total Load: L/240	3/4" max.	L/240	*supporting glass	Total Load: L/240	3/4" ma	x.	
Quantum Consultin	ig Engineers LLC	Projec	t: Hong & Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue,	Suite 323			Designer:	JJS	Sheet:	1
Seattle, WA 98101		Clier	t: Chesmore Buck	Checked By:			

WIND EXPOSURE CATEGORIES: Wind Exposure Category Exposure 'C' (1500 feet from Lake) Exposure 'B' (all other areas) WIND SPEED-UP (TOPOGRAPHIC EFFECT) - K.t Factor : K_zt Factor K_zt = 1.0 K_zt = 1.3 K_zt = 1.6 K_zt = 1.9 GENERAL NOTES FOR WIND EXPOSURE AND WIND SPEED-UP MAP This map is the Wind Exposure Category and Wind Speed-up (Topographic Effects) Map for the City of Mercer island. This map shows the minimum wind exposure category and the minimum wind speed-up. K_{k}^{**} factor, which will be accepted without site specific documentation and exclusion. calculation. Other wind speed phenomena may occur on Mercer Island that is not specifically indentified on this map. It is the responsibility of the Owner (or their Design Professional) to review site conditions and determine the appropriate design wind speed and exposure category for their specific project and location. This map is for the sole use of the staff of the City of Mercer Island's Development Services Group (DSG) for the purposes of permit application evaluation. This map provides DSG staff a general assessment of Wind Exposure Category and Wind Speed-up (Topographic Effects). All areas have not been spedifically evaluated and there may be locations that are not corredly represented on this map. It is the responsibility of Individual property owners and map users to evaluate risk asociated with their proposed development. No site specific assessment of risk is implied or otherwise indicated by the City of Mercer Island with this map. Information about data used for the map, references, and data limitation are all described the associated 'Read Me' document. The digital version of this map is accompanied by a meta data file containing pertinent information about map construction. This data map is available on the City of Mercer Island website. The City of Mercer Island is using guidance provided within ICC Section 1609 & ASCE 7-05 Chapter 6 regarding definitions used when creating this map. DEFINITIONS: K₄I factor: The topographic effect of wind speed-up at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure category, that meet all of the conditions noted in ASCE 7-b6 Minimum Design Loads for Buildings and Other Structures, Section 6.5.7. Exposure B: The wind exposure category that applies where the site in question is located a minimum of 1500 feet from the shoreline and the mean roof height is less than or equal to 30 feet per IBC 2006 section 1609.4.3. Exposure C: The wind exposure category that applies where the site in question is located within 1500 feet from the shoreline per IBC 2006 section 1609.4.3. Wind Speed: Minimum 85 mph 3-second gust per IRC Figure R301,2(4)

values utilized in their wind load determination)

ATC Hazards by Location

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:	5425 W Mercer Way, Mercer Island, WA 98040, USA
Coordinates:	47.55428420000001, -122.2323217
Elevation:	35 ft
Timestamp:	2023-04-03T18:49:04.254Z
Hazard Type:	Wind

85 mph

ASCE 7-16		ASCE 7-10		ASCE 7-05
MRI 10-Year	67 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed
MRI 25-Year	73 mph	MRI 25-Year	79 mph	
MRI 50-Year	78 mph	MRI 50-Year	85 mph	
MRI 100-Year	83 mph	MRI 100-Year	91 mph	
Risk Category I	92 mph	Risk Category I	100 mph	
Risk Category II	97 mph	Risk Category II	110 mph	
Risk Category III	104 mph	Risk Category III-IV	115 mph	
Risk Category IV	108 mph			

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

A This is a beta release of the new ATC Hazards by Location website. Please <u>contact us</u> with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

fran it

ATC Hazards by Location

Search Information

Search mormation		Edmonds
Address:	5425 W Mercer Way, Mercer Island, WA 98040, USA	35 ft 2
Coordinates:	47.55428420000001, -122.2323217	Seat PRedmond
Elevation:	35 ft	Bremerton Renton
Timestamp:	2023-05-24T19:00:24.918Z	rest SeaTacy OKent
Hazard Type:	Seismic	Tacoma
Reference Document:	ASCE7-16	Coocle PUy Map data ©2023 Google Report a map error
Risk Category:	П	
Site Class:	D	

Basic Parameters

Name	Value	Description	
S _S	1.457	MCE _R ground motion (period=0.2s)	
S ₁	0.506	MCE _R ground motion (period=1.0s)	
S _{MS}	1.457	Site-modified spectral acceleration value	
S _{M1}	* null	Site-modified spectral acceleration value	
S _{DS}	0.972	Numeric seismic design value at 0.2s SA	
S _{D1}	* null	Numeric seismic design value at 1.0s SA	

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR_S	0.902	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.624	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.687	Site modified peak ground acceleration

PGAd	1.384	Factored deterministic acceleration value (PGA)
S1D	1.606	Factored deterministic acceleration value (1.0s)
S1UH	0.563	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1RT	0.506	Probabilistic risk-targeted ground motion (1.0s)
SsD	4.124	Factored deterministic acceleration value (0.2s)
SsUH	1.616	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsRT	1.457	Probabilistic risk-targeted ground motion (0.2s)
ΤL	6	Long-period transition period (s)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

HONG AND KAO RESIDENCE 5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

GRAVITY DESIGN – MAIN HOUSE

BUCK ture FAX: 425-679 PHONE: 425-679 HESMORE r c h i t e c er TUUTH AVENUE NE, BELLEVUE, WA 98004 αŪ

AND KAO RESIDENC 5425 W. MERCER WAY MERCER ISLAND, WA 98040

MAIN FLOOR FRAMING PLAN S.2 Sheet No. Project No. 2222

Date:

BUCK ture FAX: 425-679-0804 PHONE: 425-679-0807 m+ Ш ESMORE c h i t e o WA Ξ-BELLEVUE, N αŪ

vo. Date

AND KAO RESIDENC 5425 W. MERCER WAY MERCER ISLAND, WA 98040

UPPER FLOOR FRAMING PLAN S.3

Project No. 2222 Date:

CHESMORE BUCK a r c h i t e c t u r e z1007HARNER SUITE 100 R4X56774000 BELLEVIL, MA 80004

HONG AND KAO RESIDENCE 5425 W. MERCER WAY MERCER ISLAND, WA 98040

ROOF FRAMING PLAN Sheet No. 2222 Date: 5/30/23

23127 Hong and Kao Residence - Main House

Upper Roof				
Member Name	Results	Current Solution	Comments	
RJ1 - Master Closet Roof Joist, 11'-0"	Passed	1 piece(s) 2 x 10 HF No.2 @ 16" OC		
RJ2 - Master Closet Roof Joist, 13'-0"	Passed	1 piece(s) 2 x 10 HF No.2 @ 16" OC		
RJ3 - Existing 2x10, 9'-6"	Passed	1 piece(s) 2 x 10 HF No.2 @ 16" OC		
RJ4 - Existing 2x12, 17'-6"	Passed	1 piece(s) 2 x 12 HF No.2 @ 16" OC		
RJ5 - Master Bed Roof Joist , 7'- 6"	Passed	1 piece(s) 2 x 12 HF No.2 @ 24" OC		
RB1 - Bed 4 Flush Beam, 10'-6"	Passed	1 piece(s) 5 1/8" x 9" 24F-V8 DF Glulam		
RB2 - Bath 4 Header, 5'-0"	Passed	2 piece(s) 2 x 10 HF No.2		
RB3 - Exercise Room Beam, 11'- 8"	Passed	1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam		
RB4 - Master Closet Beam, Two Span	Passed	1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam		
RB5 - Existing Glulam, 17'-0"	Passed	1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam		
RB8 - South Master Roof Beam, 3'-3" Cantilever	Passed	1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam		
RB9 - North Master Roof Beam, 3'-3" Cantilever	Passed	1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam		
RB10 - Exercise Room Header, 5'-0"	Passed	2 piece(s) 2 x 8 HF No.2		
RB11 - Bedroom Header, 5'-3"	Passed	1 piece(s) 4 x 10 HF No.2		
Lower Roof				
Member Name	Results	Current Solution	Comments	
RJ6 - Existing Powder Roof Joist, 9'-8"	Passed	1 piece(s) 2 x 8 HF No.2 @ 16" OC		
RJ7 - Existing Office Roof Joist, 14'-3"	Passed	1 piece(s) 2 x 10 HF No.2 @ 16" OC		
RJ8 - Living Room Roof Joist, 17'-0"	Passed	1 piece(s) 11 7/8" TJI® 110 @ 24" OC		
RJ9 - Entry Roof Joist, 11'-4"	Passed	1 piece(s) 2 x 10 HF No.2 @ 24" OC		
RB12 - Living Room Roof Beam, Grid B	Passed	1 piece(s) 5 1/8" x 21" 24F-V4 DF Glulam		
RB13 - Existing Entry Header, 12'-0"	Passed	3 piece(s) 2 x 10 DF No.2		
RB14 - Existing Entry Header, 8'- 9"	Passed	3 piece(s) 2 x 10 DF No.2		
RB15 - Living Room Flush Beam, Grid 3	Passed	1 piece(s) 3 1/8" x 12" 24F-V4 DF Glulam		
RB16 - Office Flush Header, Grid A	Passed	1 piece(s) 4 x 10 HF No.2		

ForteWEB Software Operator Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Job Notes

6/7/2023 7:55:51 PM UTC ForteWEB v3.5 File Name: 23127 Hong and Kao Residence - Main House

Upper Floor			
Member Name	Results	Current Solution	Comments
UJ1 - Solarium Floor Joist, 11'-9"	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	Right cantilever exceeds the maximum braced cantilever length of 4'.
UJ2 - Exercise Floor Joist, 12'-6"	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
UJ3 - Shower Floor Joist, 6'-0"	Passed	1 piece(s) 2 x 8 HF No.2 @ 16" OC	
UJ4 - Landing Floor Joist, 9'-6"	Passed	1 piece(s) 2 x 12 HF No.2 @ 16" OC	
UJ5 - Master Floor Joist, 18'-0"	Passed	1 piece(s) 2 x 12 HF No.2 @ 12" OC	
UJ6 - Deck Joist, 12'-6"	Passed	1 piece(s) 4 x 8 DF No.1 @ 16" OC	
UJ7 - Deck Joist, 6'-0"	Passed	1 piece(s) 4 x 8 DF No.1 @ 16" OC	
UJ8 - Landing Floor Joist, 7'-0"	Passed	1 piece(s) 2 x 6 HF No.2 @ 16" OC	
UB1 - Garage Door Header, 9'-6"	Passed	1 piece(s) 5 1/8" x 10 1/2" 24F-V4 DF Glulam	
UB3 - Flush Beam at Shower, 11'-9"	Passed	1 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL	
UB4 - Garage Window Header, 9'-6"	Passed	1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam	
UB5 - Beam over Pantry, 15'-0"	Passed	1 piece(s) 3 1/8" x 18" 24F-V4 DF Glulam	
UB7 - Flush Header at Master Window, 17'-0"	Passed	3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL	
UB12 - Deck Edge Beam, Grid D	Passed	2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL	
UB13 - Flush Beam over Dining, 19'-9"	Passed	1 piece(s) 5 1/8" x 22 1/2" 24F-V4 DF Glulam	
UB14 - Utility Room Header, 5'-6"	Passed	2 piece(s) 2 x 10 HF No.2	
UB15 - Flush Beam over Entry, 11'-6"	Passed	1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL	
UP1 - Post at Bed 4	Passed	1 piece(s) 4 x 6 HF No.2	
UP2 - Post at Master Closet	Passed	1 piece(s) 4 x 6 HF No.2	
UP3 - Post at Exercise Room	Passed	3 piece(s) 2 x 6 HF No.2	
UP4 - Existing Post at Master Bath	Passed	1 piece(s) 4 x 6 HF No.2	
UP5 - Post at South Deck	Passed	1 piece(s) 6 x 6 DF No.1	
UP6 - Post at North Master	Passed	1 piece(s) 4 x 6 HF No.2	
Main Floor			
Member Name	Results	Current Solution	Comments
J1 - Deck Joist, 13'-0"	Passed	1 piece(s) 2 x 12 DF No.2 @ 16" OC	
J2 - Floor Joist, 14'-0"	Passed	1 piece(s) 2 x 12 HF No.2 @ 16" OC	
J3 - Floor Joist, 17'-0"	Passed	1 piece(s) 2 x 12 DF No.2 @ 16" OC	
J4 - Floor Joist, 18'-0"	Passed	1 piece(s) 2 x 12 DF No.2 @ 12" OC	
J5 - Entry Floor Joist, 12'-0"	Passed	1 piece(s) 2 x 8 DF No.1 @ 16" OC	
B1 - Garage Floor Beam, 9'-0"	Passed	1 piece(s) 4 x 12 DF No.2	
B2 - Office Flush Beam, Grid A B3 - Bedroom 2 Window Header,	Passed Passed	1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam 1 piece(s) 3 1/8" x 10 1/2" 24F-V4 DF Glulam	
Grid 1 B4 - Kitchen Flush Beam, Grid 1	Passed	2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL	
B5 - Deck Flush Beam	Passed	3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL	
B6 - Deck Flush Beam	Passed	3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL	
B8 - Family Room Flush Beam, Grid C	Passed	1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam	
P1 - Garage Header Post	Passed	1 piece(s) 6 x 6 DF No.1	
P2 - Garage Wall Post	Passed	1 piece(s) 6 x 6 DF No.1	
P3 - Living Room Wall Post, Grid	Passed	1 piece(s) 6 x 6 DF No.1	
1			
1 P4 - Living Room Wall Post, Grid 3	Passed	1 piece(s) 4 x 6 HF No.2	

ForteWEB Software Operator	Job Notes]
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Basement			
Member Name	Results	Current Solution	Comments
BP1 - Basement Wall Post	Passed	1 piece(s) 6 x 8 DF No.1	
BP2 - Basement Corner Wall Post	Passed	1 piece(s) 6 x 6 DF No.1	
BP3 - Deck Post	Passed	1 piece(s) 6 x 6 DF No.1	

ForteWEB Software Operator
Maxwell Skotheim
Quantum Consulting Engineers
(206) 957-3906
MSkotheim@quantumce.com

Job Notes

6/7/2023 7:55:51 PM UTC ForteWEB v3.5 File Name: 23127 Hong and Kao Residence - Main House

Upper Roof, RJ1 - Master Closet Roof Joist, 11'-0" 1 piece(s) 2 x 10 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	369 @ 11' 3 1/2"	911 (1.50")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	318 @ 10' 6 1/4"	1596	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1024 @ 5' 9"	2204	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.106 @ 5' 9"	0.554	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.176 @ 5' 9"	0.739	Passed (L/756)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	153	230	383	Blocking
2 - Hanger on 9 1/4" GLB beam	1.50"	Hanger ¹	1.50"	151	227	378	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	10' 3" o/c				
Bottom Edge (Lu)	11' 4" o/c				
•Maximum allowable bracing intervals based on applied load.					

app

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 5"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Upper Roof, RJ2 - Master Closet Roof Joist, 13'-0" 1 piece(s) 2 x 10 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	453 @ 2 1/2"	2126 (3.50")	Passed (21%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	382 @ 1' 3/4"	1596	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1445 @ 6' 9 1/2"	2204	Passed (66%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.210 @ 6' 9 1/2"	0.658	Passed (L/751)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.351 @ 6' 9 1/2"	0.878	Passed (L/451)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	181	272	453	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	181	272	453	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	6' 6" o/c				
Bottom Edge (Lu)	13' 7" o/c				
-Maximum alloughte bracing intervals based on applied land					

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 13' 7"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RJ3 - Existing 2x10, 9'-6" 1 piece(s) 2 x 10 HF No.2 @ 16" OC

Overall Length: 10' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	336 @ 2 1/2"	2126 (3.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	265 @ 1' 3/4"	1596	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	779 @ 5' 1/2"	2204	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.061 @ 5' 1/2"	0.483	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.102 @ 5' 1/2"	0.644	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	134	202	336	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	134	202	336	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	10' 1" o/c					
Bottom Edge (Lu)	10' 1" o/c					
-Maximum allowable bracing intervals based on applied lead						

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 1"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RJ4 - Existing 2x12, 17'-6" 1 piece(s) 2 x 12 HF No.2 @ 16" OC

Overall Length: 17' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	586 @ 17' 9 1/2"	911 (1.50")	Passed (64%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	524 @ 16' 10 1/4"	1941	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2576 @ 9'	2964	Passed (87%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.372 @ 9'	0.879	Passed (L/567)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.620 @ 9'	1.172	Passed (L/340)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	240	360	600	Blocking
2 - Hanger on 11 1/4" GLB beam	1.50"	Hanger ¹	1.50"	238	357	594	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 6" o/c					
Bottom Edge (Lu)	17' 10" o/c					
•Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 17' 11"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Upper Roof, RJ5 - Master Bed Roof Joist , 7'-6" 1 piece(s) 2 x 12 HF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	375 @ 1 1/2"	911 (1.50")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	281 @ 1' 3/4"	1941	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	703 @ 3' 10 1/2"	2964	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.018 @ 3' 10 1/2"	0.375	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.031 @ 3' 10 1/2"	0.500	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 11 1/4" GLB beam	1.50"	Hanger ¹	1.50"	155	233	388	See note 1
2 - Hanger on 11 1/4" GLB beam	1.50"	Hanger ¹	1.50"	155	233	388	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 6" o/c					
Bottom Edge (Lu)	7' 6" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 7' 9"	24"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RB1 - Bed 4 Flush Beam, 10'-6" 1 piece(s) 5 1/8" x 9" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3298 @ 1/4"	5830 (1.75")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2750 @ 10 3/4"	9371	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	8829 @ 5' 4 3/4"	15913	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.193 @ 5' 4 3/4"	0.538	Passed (L/668)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.328 @ 5' 4 3/4"	0.717	Passed (L/394)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	1.75"	1.75"	1.50"	1355	1943	3298	None
2 - Column - HF	1.75"	1.75"	1.50"	1355	1943	3298	None

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	10' 10" o/c					
Bottom Edge (Lu)	10' 10" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

		T 11 A A B B	Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 9 1/2"	N/A	11.2		
1 - Uniform (PSF)	0 to 10' 9 1/2" (Front)	12'	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

PASSED

Upper Roof, RB2 - Bath 4 Header, 5'-0" 2 piece(s) 2 x 10 HF No.2

Overall Length: 5' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1767 @ 0	1823 (1.50")	Passed (97%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1761 @ 10 3/4"	3191	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1764 @ 1'	3833	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.015 @ 2' 3 5/8"	0.262	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.025 @ 2' 3 11/16"	0.350	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	674	1093	1767	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	173	257	430	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

.,		Tributory Midth	Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	7.0		
1 - Point (Ib)	1' (Top)	N/A	810	1350	Flush Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RB3 - Exercise Room Beam, 11'-8" 1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3591 @ 2"	11659 (3.50")	Passed (31%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2980 @ 1' 1/2"	9371	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	10406 @ 6' 1 1/2"	15913	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.279 @ 6' 1 1/2"	0.596	Passed (L/512)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.475 @ 6' 1 1/2"	0.794	Passed (L/301)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 11".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	1477	2113	3591	Blocking
2 - Column - HF	3.50"	3.50"	1.50"	1477	2113	3591	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 3" o/c				
Bottom Edge (Lu)	12' 3" o/c				
Maximum allowable bracing intervals based on applied load					

um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	11.2		
1 - Uniform (PSF)	0 to 12' 3" (Top)	11' 6"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RB4 - Master Closet Beam, Two Span 1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

Overall Length: 16' 1 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5804 @ 9' 11 1/4"	11659 (3.50")	Passed (50%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2762 @ 9' 1/2"	9371	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	4501 @ 4' 2 1/16"	15913	Passed (28%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-5113 @ 9' 11 1/4"	12266	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.071 @ 4' 7 5/8"	0.489	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.118 @ 4' 7 5/16"	0.651	Passed (L/994)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 1/8".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 4' 10 11/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	952	1389	2341	Blocking
2 - Column - HF	3.50"	3.50"	1.74"	2391	3413	5804	Blocking
3 - Column - HF	3.50"	3.50"	1.50"	385	751		Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 2" o/c					
Bottom Edge (Lu)	16' 2" o/c					
•Maximum allowable bracing intervals based on applied load.						

iowable bracing intervals based on applied ic

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 1 1/2"	N/A	11.2		
1 - Uniform (PSF)	0 to 16' 1 1/2" (Top)	11'	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Upper Roof, RB5 - Existing Glulam, 17'-0" 1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6176 @ 2"	11659 (3.50")	Passed (53%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5268 @ 1' 3 1/2"	12495	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	26128 @ 8' 9 1/2"	28290	Passed (92%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.619 @ 8' 9 1/2"	0.863	Passed (L/335)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	1.053 @ 8' 9 1/2"	1.150	Passed (L/196)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 17' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.85"	2549	3627	6176	Blocking
2 - Column - HF	3.50"	3.50"	1.85"	2549	3627	6176	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' 7" o/c				
Bottom Edge (Lu)	17' 7" o/c				
Maximum allowable bracing intervals based on applied load					

ium allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 7"	N/A	14.9		
1 - Uniform (PSF)	0 to 17' 7" (Top)	13' 9"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	
Motoriellie quantamee.com	

Upper Roof, RB8 - South Master Roof Beam, 3'-3" Cantilever 1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam

Overall Length: 16' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11260 @ 12' 8 1/4"	11659 (3.50")	Passed (97%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	7935 @ 11' 6 1/2"	12495	Passed (64%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	22323 @ 8' 9"	28290	Passed (79%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-10875 @ 12' 8 1/4"	28290	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.221 @ 6' 11 9/16"	0.626	Passed (L/680)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.352 @ 6' 10 15/16"	0.835	Passed (L/427)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 5 7/8".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 4' 9 3/16''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	1053	1614	2667	Blocking
2 - Column - HF	3.50"	3.50"	3.38"	5003	6257	11260	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

	Lateral Bracing	Bracing Intervals	Comments				
	Top Edge (Lu)	16' 1" o/c					
	Bottom Edge (Lu)	16' 1" o/c					
1							

Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 1"	N/A	14.9		
1 - Point (lb)	8' 9" (Front)	N/A	4322	5875	Linked from: RB6 - Master Bed Flush Beam, 31'-0", Support 1
2 - Point (lb)	16' (Front)	N/A	1494	1763	Linked from: RB7 - Deck Roof Flush Beam, 31'-0", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Maxwell Skotheim
Quantum Consulting Engineers
(206) 957-3906
MSkotheim@quantumce.com

Upper Roof, RB9 - North Master Roof Beam, 3'-3" Cantilever 1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12045 @ 8' 2 1/4"	18322 (5.50")	Passed (66%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	8697 @ 6' 11 1/2"	12495	Passed (70%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	11003 @ 5' 6"	28290	Passed (39%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-15039 @ 8' 2 1/4"	28290	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.143 @ 13' 1"	0.490	Passed (2L/822)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.220 @ 13' 1"	0.653	Passed (2L/534)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 8 1/8".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 7 $1/2^{"}$.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	638	1467/-19	2106	Blocking
2 - Column - DF	5.50"	5.50"	3.62"	5373	6672	12045	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	13' 1" o/c				
Bottom Edge (Lu)	13' 1" o/c				
Maximum allowable bracing intervals based on applied load					

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 13' 1"	N/A	14.9		
1 - Point (lb)	5' 6" (Front)	N/A	4322	5875	Linked from: RB6 - Master Bed Flush Beam, 31'-0", Support 1
2 - Point (lb)	12' 9" (Front)	N/A	1494	1763	Linked from: RB7 - Deck Roof Flush Beam, 31'-0", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Maxwell Skotheim
 Quantum Consulting Engineers

 (206) 957-3906
 MSkotheim@quantumce.com

6/7/2023 7:55:51 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House Page 15 / 70

Upper Roof, RB10 - Exercise Room Header, 5'-0" 2 piece(s) 2 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	999 @ 0	1823 (1.50")	Passed (55%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	721 @ 8 3/4"	2501	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1311 @ 2' 7 1/2"	2569	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.031 @ 2' 7 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.053 @ 2' 7 1/2"	0.350	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	408	591	999	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	408	591	999	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	5.5		comments
1 - Uniform (PSF)	0 to 5' 3" (Top)	7' 6"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Roof, RB11 - Bedroom Header, 5'-3" 1 piece(s) 4 x 10 HF No.2

Overall Length: 5' 7 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	779 @ 5' 7 1/2"	2126 (1.50")	Passed (37%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	525 @ 1' 1/4"	3723	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1071 @ 2' 10 1/2"	4879	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 2' 10 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.019 @ 2' 10 1/2"	0.367	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column Cap - steel	3.00"	3.00"	1.50"	340	474	814	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	325	454	779	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	5' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 7 1/2"	N/A	8.2		
1 - Uniform (PSF)	0 to 5' 7 1/2" (Top)	5' 6"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RJ6 - Existing Powder Roof Joist, 9'-8" 1 piece(s) 2 x 8 HF No.2 @ 16" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	342 @ 2 1/2"	2126 (3.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	282 @ 10 3/4"	1251	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	806 @ 5' 1 1/2"	1477	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.136 @ 5' 1 1/2"	0.492	Passed (L/868)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.226 @ 5' 1 1/2"	0.656	Passed (L/521)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	137	205	342	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	137	205	342	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	10' 2" o/c			
Bottom Edge (Lu)	10' 3" o/c			
Maximum allowable bracing intervals based on applied load				

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 3"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RJ7 - Existing Office Roof Joist, 14'-3" 1 piece(s) 2 x 10 HF No.2 @ 16" OC

Overall Length: 14' 10"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	494 @ 2 1/2"	2126 (3.50")	Passed (23%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	424 @ 1' 3/4"	1596	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1732 @ 7' 5"	2204	Passed (79%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.302 @ 7' 5"	0.721	Passed (L/572)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.504 @ 7' 5"	0.961	Passed (L/343)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	198	297	494	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	198	297	494	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 10" o/c					
Bottom Edge (Lu)	14' 10" o/c					
Maximum allowable bracing intervale based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 14' 10"	16"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RJ8 - Living Room Roof Joist, 17'-0" 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	742 @ 2 1/2"	1581 (3.50")	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	713 @ 3 1/2"	1794	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2598 @ 7' 5"	3634	Passed (71%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.246 @ 7' 5"	0.721	Passed (L/702)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.411 @ 7' 5"	0.961	Passed (L/421)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	297	445	742	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	297	445	742	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	14' 10" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 14' 10"	24"	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RJ9 - Entry Roof Joist, 11'-4" 1 piece(s) 2 x 10 HF No.2 @ 24" OC

Overall Length: 11' 10 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	746 @ 2"	1823 (3.00")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	617 @ 1' 1/4"	1596	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	2083 @ 5' 11"	2204	Passed (94%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.184 @ 5' 11"	0.575	Passed (L/752)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.386 @ 5' 11"	0.767	Passed (L/358)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.50"	391	355	746	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	393	358	751	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	2' 7" o/c					
Bottom Edge (Lu)	11' 11" o/c					
Maximum allowable brasing intervals based on applied load						

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 10 1/2"	24"	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RB12 - Living Room Roof Beam, Grid B 1 piece(s) 5 1/8" x 21" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8941 @ 14' 5"	11211 (3.50")	Passed (80%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	6437 @ 2' 1/2"	21866	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	31123 @ 7' 3 1/2"	85162	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.059 @ 7' 3 1/2"	0.712	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.160 @ 7' 3 1/2"	0.950	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length L = 14' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - DF	3.50"	3.50"	2.68"	5659	3281	8941	None
2 - Beam - DF	3.50"	3.50"	2.79"	5659	3281	8941	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 7" o/c					
Bottom Edge (Lu)	14' 7" o/c					
•Maximum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 7"	N/A	26.2		
1 - Uniform (PSF)	0 to 14' 7" (Front)	15'	20.0	30.0	Roof
2 - Uniform (PLF)	0 to 14' 7" (Top)	N/A	450.0	-	Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RB13 - Existing Entry Header, 12'-0" 3 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	853 @ 1 1/2"	8438 (3.00")	Passed (10%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	714 @ 1' 1/4"	5744	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2561 @ 6' 3"	6088	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.064 @ 6' 3"	0.613	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.146 @ 6' 3"	0.817	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	478	375	853	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	478	375	853	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 6" o/c	
Bottom Edge (Lu)	12' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	10.6		
1 - Uniform (PSF)	0 to 12' 6" (Top)	2'	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RB14 - Existing Entry Header, 8'-9" 3 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2525 @ 1 1/2"	8438 (3.00")	Passed (30%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1968 @ 1' 1/4"	5744	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5529 @ 4' 7 1/2"	6088	Passed (91%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.079 @ 4' 7 1/2"	0.450	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.170 @ 4' 7 1/2"	0.600	Passed (L/636)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1346	1179	2525	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1346	1179	2525	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 3" o/c	
Bottom Edge (Lu)	9' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	10.6		
1 - Uniform (PSF)	0 to 9' 3" (Top)	8' 6"	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Lower Roof, RB15 - Living Room Flush Beam, Grid 3 1 piece(s) 3 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2457 @ 1 1/2"	6094 (3.00")	Passed (40%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2096 @ 1' 3"	7619	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	10139 @ 8' 6"	17250	Passed (59%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.197 @ 8' 6"	0.837	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.632 @ 8' 6"	1.117	Passed (L/318)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1692	765	2457	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1692	765	2457	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' o/c	
Bottom Edge (Lu)	17' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17'	N/A	9.1		
1 - Uniform (PSF)	0 to 17' (Top)	2'	20.0	30.0	Roof
2 - Uniform (PLF)	0 to 17' (Top)	N/A	150.0	30.0	Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Lower Roof, RB16 - Office Flush Header, Grid A 1 piece(s) 4 x 10 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1465 @ 1 1/2"	4253 (3.00")	Passed (34%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	966 @ 1' 1/4"	3723	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2018 @ 3'	4879	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.020 @ 3'	0.287	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.040 @ 3'	0.383	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	745	720	1465	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	745	720	1465	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	6' o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6'	N/A	8.2		
1 - Uniform (PSF)	0 to 6' (Top)	7'	20.0	30.0	Roof
2 - Uniform (PLF)	0 to 6' (Top)	N/A	100.0	30.0	Parapet w/ veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UJ1 - Solarium Floor Joist, 11'-9" 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	529 @ 2 1/2"	1041 (2.25")	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	508 @ 3 1/2"	1560	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-1077 @ 12' 2 1/4"	2726	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.075 @ 5' 9 7/16"	0.299	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.109 @ 5' 8 3/4"	0.599	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	56	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.75"	152	388	32/-17	540	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	3.50"	3.50"	486	132	424	910	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 2" o/c	
Bottom Edge (Lu)	5' 6" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

		Creating	Dead	Floor Live	Snow	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 6' 6"	16"	22.0	60.0	-	Roof Deck
2 - Uniform (PSF)	6' 6" to 17' 4"	16"	31.0	-	30.0	Low Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906
 MSkotheim@quantumce.com

6/7/2023 7:55:51 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House Page 27 / 70

Upper Floor, UJ2 - Exercise Floor Joist, 12'-6" 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	446 @ 2 1/2"	1041 (2.25")	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	433 @ 3 1/2"	1560	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1391 @ 6' 6 1/2"	3160	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.111 @ 6' 6 1/2"	0.317	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.145 @ 6' 6 1/2"	0.633	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	54	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.75"	105	349	454	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.75"	105	349	454	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 10" o/c				
Bottom Edge (Lu)	12' 11" o/c				
The side and such a should be a should be a side and the second states					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 1"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers	
(206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UJ3 - Shower Floor Joist, 6'-0" 1 piece(s) 2 x 8 HF No.2 @ 16" OC

Overall Length: 6' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	221 @ 2 1/2"	1367 (2.25")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	166 @ 10 3/4"	1088	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	330 @ 3' 3 1/2"	1284	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 3' 3 1/2"	0.154	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.036 @ 3' 3 1/2"	0.308	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	53	176	228	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	53	176	228	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 5" o/c					
Bottom Edge (Lu)	6' 5" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 6' 7"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers (206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UJ4 - Landing Floor Joist, 9'-6" 1 piece(s) 2 x 12 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	329 @ 1 1/2"	911 (1.50")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	264 @ 1' 3/4"	1688	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	782 @ 4' 10 1/2"	2577	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.042 @ 4' 10 1/2"	0.237	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.055 @ 4' 10 1/2"	0.475	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" HF beam	1.50"	Hanger ¹	1.50"	78	260	338	See note 1
2 - Hanger on 11 1/4" HF beam	1.50"	Hanger ¹	1.50"	78	260	338	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
9' 6" o/c	
9' 6" o/c	
	9' 6" o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
Connector not found	N/A	N/A	N/A	N/A				
Connector not found	N/A	N/A	N/A	N/A				
	Model Connector not found	Model Seat Length Connector not found N/A	Model Seat Length Top Fasteners Connector not found N/A N/A	Model Seat Length Top Fasteners Face Fasteners Connector not found N/A N/A N/A	Model Seat Length Top Fasteners Face Fasteners Member Fasteners Connector not found N/A N/A N/A N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 9"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Upper Floor, UJ5 - Master Floor Joist, 18'-0" 1 piece(s) 2 x 12 HF No.2 @ 12" OC

Overall Length: 18' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	468 @ 1 1/2"	911 (1.50")	Passed (51%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	419 @ 1' 3/4"	1688	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2106 @ 9' 1 1/2"	2577	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.408 @ 9' 1 1/2"	0.450	Passed (L/529)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.531 @ 9' 1 1/2"	0.900	Passed (L/407)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	110	365	475	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	110	365	475	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 8" o/c	
Bottom Edge (Lu)	18' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 3"	12"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Upper Floor, UJ6 - Deck Joist, 12'-6" 1 piece(s) 4 x 8 DF No.1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	683 @ 1 1/2"	3281 (1.50")	Passed (21%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	617 @ 8 3/4"	3045	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2135 @ 6' 4 1/2"	3820	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.233 @ 6' 4 1/2"	0.313	Passed (L/645)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.318 @ 6' 4 1/2"	0.625	Passed (L/472)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	187	510	697	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	187	510	697	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
12' 6" o/c	
12' 6" o/c	
	12' 6" o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 9"	16"	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UJ7 - Deck Joist, 6'-0" 1 piece(s) 4 x 8 DF No.1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	328 @ 1 1/2"	3281 (1.50")	Passed (10%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	262 @ 8 3/4"	3045	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	492 @ 3' 1 1/2"	3820	Passed (13%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.012 @ 3' 1 1/2"	0.150	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.017 @ 3' 1 1/2"	0.300	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 7 1/4" LVL beam	1.50"	Hanger ¹	1.50"	92	250	342	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	92	250	342	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	6' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 6' 3"	16"	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Upper Floor, UJ8 - Landing Floor Joist, 7'-0" 1 piece(s) 2 x 6 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	243 @ 1 1/2"	911 (1.50")	Passed (27%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	211 @ 7"	825	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	425 @ 3' 7 1/2"	801	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.107 @ 3' 7 1/2"	0.175	Passed (L/788)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.139 @ 3' 7 1/2"	0.350	Passed (L/606)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 5 1/2" HF beam	1.50"	Hanger ¹	1.50"	58	193	251	See note 1
2 - Hanger on 5 1/2" HF beam	1.50"	Hanger ¹	1.50"	58	193	251	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' o/c	
Bottom Edge (Lu)	7' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Top Mount Hanger	THA29	2.25"	4-10d	6-10d	4-10d		
2 - Top Mount Hanger	THA29	2.25"	4-10d	6-10d	4-10d		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 7' 3"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB1 - Garage Door Header, 9'-6" 1 piece(s) 5 1/8" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6230 @ 1/2"	6663 (2.00")	Passed (94%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4832 @ 1' 1/2"	9507	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	14819 @ 4' 11"	18834	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.110 @ 4' 11"	0.325	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.290 @ 4' 11"	0.488	Passed (L/404)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	2.00"	2.00"	1.87"	3870	2262	885	6230	None
2 - Trimmer - HF	2.00"	2.00"	1.87"	3870	2262	885	6230	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 10" o/c	
Bottom Edge (Lu)	9' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 10"	N/A	13.1			
1 - Uniform (PSF)	0 to 9' 10" (Top)	11' 6"	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 9' 10" (Top)	6'	18.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 9' 10" (Top)	N/A	528.0	-	-	Wall w/ Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB3 - Flush Beam at Shower, 11'-9" 1 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	775 @ 2"	2363 (1.50")	Passed (33%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	807 @ 10' 11 1/8"	4295	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2199 @ 5' 10 1/8"	7977	Passed (28%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.180 @ 17' 4"	0.260	Passed (2L/694)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.184 @ 17' 4"	0.521	Passed (2L/678)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	2.00"	Hanger ¹	1.50"	182	615/-97	796	See note 1
2 - Beam - GLB	5.00"	5.00"	1.50"	450	1232	1682	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	16' 11" o/c						
Bottom Edge (Lu)	17' 2" o/c						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A					
Pofor to manufacturor notos and instruction	one for proper installation and use	of all connectors								

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	2" to 17' 4"	N/A	6.5		
1 - Uniform (PSF)	0 to 17' 4" (Front)	2' 6"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB4 - Garage Window Header, 9'-6" 1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4884 @ 1/2"	6663 (2.00")	Passed (73%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3604 @ 11"	8149	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	10066 @ 4' 6 1/2"	13838	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.090 @ 4' 6 1/2"	0.300	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.283 @ 4' 6 1/2"	0.450	Passed (L/381)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L = 9^{\circ}$.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	2.00"	2.00"	1.50"	3335	1181	886	4884	None
2 - Trimmer - HF	2.00"	2.00"	1.50"	3335	1181	886	4884	None

Bracing Intervals	Comments
9' 1" o/c	
9' 1" o/c	
	9' 1" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 1"	N/A	11.2			
1 - Uniform (PSF)	0 to 9' 1" (Top)	6' 6"	12.0	40.0		Floor
2 - Uniform (PSF)	0 to 9' 1" (Top)	6' 6"	18.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 9' 1" (Top)	N/A	528.0	-	-	Wall w/ Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	
MSK0theim@quantumce.com	

Upper Floor, UB5 - Beam over Pantry, 15'-0" 1 piece(s) 3 1/8" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3647 @ 1/2"	4063 (2.00")	Passed (90%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2410 @ 1' 8"	9938	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	8813 @ 4' 11"	33750	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.042 @ 4' 11"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.055 @ 4' 11"	0.488	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	2.00"	2.00"	1.80"	893	2753	3647	None
2 - Trimmer - HF	2.00"	2.00"	1.80"	893	2753	3647	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 10" o/c	
Bottom Edge (Lu)	9' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 10"	N/A	13.7		
1 - Uniform (PSF)	0 to 9' 10" (Top)	14'	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB7 - Flush Header at Master Window, 17'-0" 3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3359 @ 2"	5906 (1.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2989 @ 1' 1 1/4"	11222	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	14278 @ 8' 8"	24206	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.347 @ 8' 8"	0.425	Passed (L/587)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.624 @ 8' 8"	0.850	Passed (L/327)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 11 1/4" GLB beam	2.00"	Hanger ¹	1.50"	1516	1907	3422	See note 1
2 - Hanger on 11 1/4" GLB beam	2.00"	Hanger ¹	1.50"	1516	1907	3422	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	17' o/c					
Bottom Edge (Lu)	17' o/c					
Maximum allowable brasing intervale based on applied load						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length Top Fasteners Face Fasteners		Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	HHUS5.50/10	3.00"	N/A	30-10d	10-10d					
2 - Face Mount Hanger	HHUS5.50/10	3.00"	N/A	30-10d	10-10d					

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	2" to 17' 2"	N/A	17.2		
1 - Uniform (PSF)	0 to 17' 4" (Top)	1'	12.0	40.0	Floor
2 - Uniform (PSF)	0 to 17' 4" (Top)	3'	22.0	60.0	Deck
3 - Uniform (PLF)	0 to 17' 4" (Top)	N/A	80.0	-	Glazing

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB12 - Deck Edge Beam, Grid D 2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

Overall Length: 11' 9 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	13834 @ 2' 4 3/4"	14438 (5.50")	Passed (96%)		1.0 D + 0.75 L + 0.75 S (Adj Spans)
Shear (lbs)	1499 @ 11' 8 3/4"	7481	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	-1837 @ 10' 6 3/4"	16137	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.006 @ 11' 9 1/2"	0.200	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.010 @ 11' 9 1/2"	0.200	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (0.2").

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -881 lbs uplift at support located at 8' 7 1/4". Strapping or other restraint may be required.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on Single 2X HF plate	2.00"	Hanger ¹	1.50"	-15	73/-85	-	58/-101	See note 1
2 - Column - DF	5.50"	5.50"	5.27"	7107	2297	6672	13834	None
3 - Column - DF	5.50"	5.50"	1.50"	-237	335/-644	-	97/-881	None
4 - Column - DF	5.50"	5.50"	1.50"	1027	1799/-28	-	2826	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 8" o/c	
Bottom Edge (Lu)	11' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support Model Seat Length			Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	2" to 11' 9 1/2"	N/A	11.5			
1 - Uniform (PSF)	0 to 11' 9 1/2" (Top)	1'	22.0	60.0	-	Deck
2 - Point (lb)	2' 6" (Front)	N/A	1516	1907	-	Linked from: B7 - Flush Header at Master Window, 17'-0", Support 1
3 - Point (Ib)	11' 8" (Front)	N/A	600	1000	-	Deck Edge Beam
4 - Point (lb)	2' 6" (Top)	N/A	5373	-	6672	Linked from: RB9 - North Master Roof Beam, 3'-3" Cantilever, Support 2

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

6/7/2023 7:55:51 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House Page 40 / 70

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com Job Notes

6/7/2023 7:55:51 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House Page 41 / 70

Upper Floor, UB13 - Flush Beam over Dining, 19'-9" 1 piece(s) 5 1/8" x 22 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7983 @ 2"	7983 (2.40")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7930 @ 2' 1/2"	20372	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	71995 @ 9' 4"	81715	Passed (88%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.296 @ 9' 10 3/16"	0.494	Passed (L/802)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.463 @ 9' 10 1/4"	0.988	Passed (L/512)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.94 that was calculated using length L = 19' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 22 1/2" HF beam	2.00"	Hanger ¹	2.40"	2945	5037	7983	See note 1
2 - Hanger on 22 1/2" HF beam	2.00"	Hanger ¹	2.09"	2588	4363	6951	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	19' 9" o/c					
Bottom Edge (Lu)	19' 9" o/c					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model Seat Length Top Fasteners		Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	2" to 19' 11"	N/A	28.0		
1 - Point (Ib)	9' 4" (Front)	N/A	4980	9400	B6 Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB14 - Utility Room Header, 5'-6" 2 piece(s) 2 x 10 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1283 @ 1/2"	2430 (2.00")	Passed (53%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	728 @ 11 1/4"	2775	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1337 @ 2' 2"	3333	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 2' 2"	0.142	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.017 @ 2' 2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	2.00"	2.00"	1.50"	308	975	1283	None
2 - Trimmer - HF	2.00"	2.00"	1.50"	308	975	1283	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 4" o/c	
Bottom Edge (Lu)	4' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 4"	N/A	7.0		
1 - Uniform (PSF)	0 to 4' 4" (Top)	11' 3"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UB15 - Flush Beam over Entry, 11'-6" 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3653 @ 1 1/2"	4725 (1.50")	Passed (77%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2706 @ 1' 1 3/8"	7731	Passed (35%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	9477 @ 5' 11 1/4"	14358	Passed (66%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.041 @ 5' 11 1/4"	0.291	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.379 @ 5' 11 1/4"	0.581	Passed (L/368)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	3329	238	297	3730	See note 1
2 - Beam - HF	4.50"	4.50"	2.69"	3401	243	303	3810	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 11" o/c				
Bottom Edge (Lu)	11' 11" o/c				
•Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie

Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Top Mount Hanger Connector not found N/A N/A N/A N/A							
1 - Top Mount Hanger Connector not found N/A N/A N/A N/A N/A	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
	1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 12'	N/A	13.0			
1 - Uniform (PSF)	0 to 12' (Front)	1'	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 12' (Top)	2'	18.0	-	25.0	Roof
3 - Uniform (PLF)	0 to 12' (Top)	N/A	500.0	-	-	Wall w/ veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

6/7/2023 7:55:51 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House Page 44 / 70

Upper Floor, UP1 - Post at Bed 4 1 piece(s) 4 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59%)		
Compression (lbs)	5310	7969	Passed (67%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	5310	7796	Passed (68%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/3253)		1.0 D + 1.0 S
Bending/Compression	0.63	1	Passed (63%)	1.15	1.0 D + 1.0 S

Applicable calculations are based on NDS.

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Supports	Туре		Material	System : Wall	
Тор	Dbl 2X		Hem Fir		Member Type : Column
Base	2X		Hem Fir		Building Code : IBC 2018 Design Methodology : ASD
					2001gir motriodology i riob
Max Unbraced Length		Comments			

Drawing is Conceptual

		Dead	Snow	
Vertical Load	Tributary Width	(0.90)	(1.15)	Comments
1 - Point (Ib)	N/A	1990	3320	Roof

8' 7 1/2"

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Job Notes

Upper Floor, UP2 - Post at Master Closet 1 piece(s) 4 x 6 HF No.2

Wall Height: 9'

Supports

Тор

Base

8' 7 1/2"

Member Height: 8' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59%)		
Compression (lbs)	5804	7969	Passed (73%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	5804	7796	Passed (74%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/2976)		1.0 D + 1.0 S
Bending/Compression	0.74	1	Passed (74%)	1.15	1.0 D + 1.0 S

Material

Hem Fir

Hem Fir

Comments

System : Wall

Member Type : Column

Building Code : IBC 2018

Design Methodology : ASD

Drawing	is	Conceptual
Diawing	13	Conceptual

Vertical Load	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	2391	2/12	Linked from: RB4 - Master Closet Beam, Two Span, Support 2

Max Unbraced Length

· Lateral deflection criteria: Wind (L/120)

Applicable calculations are based on NDS.

Input axial load eccentricity for this design is 10% of applicable member side dimension.

Туре

Dbl 2X

2X

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Job Notes

Upper Floor, UP3 - Post at Exercise Room 3 piece(s) 2 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	3590	9601	Passed (37%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	3590	10024	Passed (36%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.02 @ mid-span	0.86	Passed (L/6187)		1.0 D + 1.0 S
Bending/Compression	0.22	1	Passed (22%)	1.15	1.0 D + 1.0 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• The column stability factor (Kf = 0.6) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Supports	Туре		Material		System : Wall		
Тор	Dbl 2X		Hem Fir		Member Type : Column Building Code : IBC 2018 Design Methodology : ASD		
Base	2X		Hem Fir				
Max Unbraced Length	1		Comments				

Drawing is Conceptual

Vertical Load	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	1477		Linked from: RB3 - Exercise Room Beam, 11'-8", Support 1

8' 7 1/2"

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Weyerhaeuser

Upper Floor, UP4 - Existing Post at Master Bath 1 piece(s) 4 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59%)		
Compression (lbs)	6176	7969	Passed (78%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	6176	7796	Passed (79%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.04 @ mid-span	0.86	Passed (L/2797)		1.0 D + 1.0 S
Bending/Compression	0.83	1	Passed (83%)	1.15	1.0 D + 1.0 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Max Unbraced Length	Comments
8' 7 1/2"	
	-

		Dead	Snow	
Vertical Load	Tributary Width	(0.90)	(1.15)	Comments
1 - Point (lb)	N/A	2549		Linked from: RB5 - Existing Glulam, 17'-0", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Job Notes

ForteWEB Software Operator
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Upper Floor, UP5 - Post at South Deck

1 piece(s) 6 x 6 DF No.1

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	11260	25830	Passed (44%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	11260	12251	Passed (92%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/2967)		1.0 D + 1.0 S
Bending/Compression	0.43	1	Passed (43%)	1.15	1.0 D + 1.0 S

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD
			besign methodology . Abb

Drawing is Conceptual

		Dead	Snow	
Vertical Load	Tributary Width	(0.90)	(1.15)	Comments
1 - Point (lb)	N/A	5003	6257	Linked from: RB8 - South Master Roof Beam, 3'-3" Cantilever, Support 2

Max Unbraced Length

8' 7 1/2"

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Upper Floor, UP6 - Post at North Master

1 piece(s) 4 x 6 HF No.2

Wall Height: 9'

Member Height: 8' 7 1/2"

Tributary Width: 1'

PASSED

Design Results Actual Allowed Result LDF Load: Combination [Load Group] Slenderness 27 50 Passed (55%) Compression (lbs) 1.0 D + 1.0 S [1] 2105 9143 Passed (23%) 1.15 Plate Bearing (lbs) 2105 7796 Passed (27%) 1.0 D + 1.0 S [1] ---0 Lateral Reaction (lbs) --N/A ---0 N/A Passed (N/A) Lateral Shear (lbs) ---N/A Lateral Moment (ft-lbs) 0 @ mid-span N/A Passed (N/A) N/A ---1.0 D + 1.0 S [1] 0.86 Passed (L/8207) Total Deflection (in) 0.01 @ mid-span ---1.0 D + 1.0 S [1] Bending/Compression 0.11 1 Passed (11%) 1.15 · Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Hem Fir	Member Type : Column
Base	2X		Hem Fir	Building Code : IBC 2018 Design Methodology : ASD
Max Unbraced Length		Comments		
8'				

Drawing is Conceptual

Vertical Load	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	638		Linked from: RB9 - North Master Roof Beam, 3'-3" Cantilever, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, J1 - Deck Joist, 13'-0" 1 piece(s) 2 x 12 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	711 @ 1 1/2"	1406 (1.50")	Passed (51%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	608 @ 1' 3/4"	2025	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2310 @ 6' 7 1/2"	2729	Passed (85%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.181 @ 6' 7 1/2"	0.325	Passed (L/864)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.247 @ 6' 7 1/2"	0.650	Passed (L/632)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	194	530	724	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	194	530	724	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
5' o/c	
13' o/c	
	5' o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 3"	16"	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Main Floor, J2 - Floor Joist, 14'-0" 1 piece(s) 2 x 12 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	485 @ 1 1/2"	911 (1.50")	Passed (53%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	420 @ 1' 3/4"	1688	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1699 @ 7' 1 1/2"	2577	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.199 @ 7' 1 1/2"	0.350	Passed (L/843)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.259 @ 7' 1 1/2"	0.700	Passed (L/649)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	114	380	494	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	114	380	494	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	14' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 3"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Main Floor, J3 - Floor Joist, 17'-0" 1 piece(s) 2 x 12 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	572 @ 1 1/2"	1406 (1.50")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	507 @ 1' 3/4"	2025	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2360 @ 8' 4 1/2"	2729	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.312 @ 8' 4 1/2"	0.412	Passed (L/634)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.406 @ 8' 4 1/2"	0.825	Passed (L/488)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	134	447	581	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	134	447	581	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
4' 9" o/c	
16' 6" o/c	
	4' 9" o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 9"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Main Floor, J4 - Floor Joist, 18'-0" 1 piece(s) 2 x 12 DF No.2 @ 12" OC

Overall Length: 18' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	468 @ 1 1/2"	1406 (1.50")	Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	419 @ 1' 3/4"	2025	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2106 @ 9' 1 1/2"	2729	Passed (77%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.332 @ 9' 1 1/2"	0.450	Passed (L/651)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.431 @ 9' 1 1/2"	0.900	Passed (L/501)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	110	365	475	See note 1
2 - Hanger on Single 2X HF plate	1.50"	Hanger ¹	1.50"	110	365	475	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
6' o/c	
18' o/c	
	6' o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 3"	12"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com		Weyerhaeuser

Main Floor, J5 - Entry Floor Joist, 12'-0" 1 piece(s) 2 x 8 DF No.1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	433 @ 2"	1823 (3.00")	Passed (24%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	374 @ 10 1/4"	1305	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1283 @ 6' 3"	1511	Passed (85%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.325 @ 6' 3"	0.406	Passed (L/450)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.422 @ 6' 3"	0.608	Passed (L/346)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Beam - HF	3.00"	3.00"	1.50"	100	333	433	Blocking
2 - Beam - HF	3.00"	3.00"	1.50"	100	333	433	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	6' 9" o/c						
Bottom Edge (Lu)	12' 6" o/c						
-Maximum alloughlo hypeing integrals based on applied load							

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 6"	16"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers (206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B1 - Garage Floor Beam, 9'-0" 1 piece(s) 4 x 12 DF No.2

Overall Length: 9' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2348 @ 2"	7656 (3.50")	Passed (31%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1746 @ 1' 2 3/4"	4725	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5240 @ 4' 9 1/2"	6091	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.059 @ 4' 9 1/2"	0.308	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.121 @ 4' 9 1/2"	0.463	Passed (L/914)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	1198	1150	2348	Blocking
2 - Column - HF	3.50"	3.50"	1.50"	1198	1150	2348	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 7" o/c	
Bottom Edge (Lu)	9' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 7"	N/A	10.0		
1 - Uniform (PSF)	0 to 9' 7" (Top)	6'	40.0	40.0	Floor w/ Topping

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Fo	rteWEB Software Operator	Job Notes
Qu (20	xwell Skotheim antum Consulting Engineers)6) 957-3906 kotheim@quantumce.com	

Main Floor, B2 - Office Flush Beam, Grid A 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8646 @ 4"	18322 (5.50")	Passed (47%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6185 @ 1' 8 1/2"	13581	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	27666 @ 7' 7"	38438	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.141 @ 7' 7"	0.363	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.437 @ 7' 7"	0.725	Passed (L/398)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column - HF	5.50"	5.50"	2.60"	5860	2123	1593	8646	None
2 - Column - HF	5.50"	5.50"	2.60"	5860	2123	1593	8646	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 2" o/c	
Bottom Edge (Lu)	15' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 2"	N/A	18.7			
1 - Uniform (PSF)	0 to 15' 2" (Front)	7'	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 15' 2" (Top)	7'	20.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 15' 2" (Top)	N/A	530.0	-	-	Wall w/ veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4349 @ 1 1/2"	6094 (3.00")	Passed (71%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4205 @ 1' 1 1/2"	5797	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	7899 @ 2'	11484	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.170 @ 5' 4 3/4"	0.306	Passed (L/866)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.350 @ 5' 8 1/2"	0.613	Passed (L/420)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.14"	1757	2592	4349	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	973	468	1441	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 6" o/c	
Bottom Edge (Lu)	12' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 6"	N/A	8.0		
1 - Uniform (PLF)	0 to 12' 6" (Top)	N/A	120.0	-	Glazing
2 - Point (Ib)	2' (Front)	N/A	1130	3060	Deck Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B4 - Kitchen Flush Beam, Grid 1 2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4335 @ 1 1/2"	7613 (3.00")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4203 @ 1' 2 1/4"	7481	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7927 @ 8' 9"	16137	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.221 @ 8' 9"	0.431	Passed (L/936)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.581 @ 8' 9"	0.863	Passed (L/356)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column - HF	3.00"	3.00"	1.71"	1875	2460	4335	None
2 - Column - HF	3.00"	3.00"	1.71"	1875	2460	4335	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 6" o/c	
Bottom Edge (Lu)	17' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 17' 6"	N/A	11.5		
1 - Uniform (PLF)	0 to 17' 6" (Top)	N/A	100.0	-	Glazing
2 - Point (Ib)	1' 3" (Top)	N/A	900	2460	Post Above
3 - Point (Ib)	16' 3" (Top)	N/A	900	2460	Post Above

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, B5 - Deck Flush Beam 3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

Overall Length: 14' 4 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6380 @ 1 1/2"	11419 (3.00")	Passed (56%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	5371 @ 10' 7 3/4"	11222	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	18001 @ 5' 10 11/16"	24206	Passed (74%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.289 @ 5' 11 5/8"	0.292	Passed (L/486)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.389 @ 5' 11 5/16"	0.584	Passed (L/360)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories		
1 - Column - HF	3.00"	3.00"	1.68"	1725	4656/-219	6380	None		
2 - Column - HF	5.50"	5.50"	2.47"	2634	6776	9410	Blocking		
Blocking Panels are assumed to carry no load	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	14' o/c	
Bottom Edge (Lu)	14' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 14' 4 1/2"	N/A	17.2		
1 - Uniform (PSF)	0 to 14' 4 1/2" (Top)	13'	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, B6 - Deck Flush Beam 3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4468 @ 1 1/2"	11419 (3.00")	Passed (39%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3572 @ 1' 2 1/4"	11222	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	12666 @ 5' 11"	24206	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.193 @ 5' 11"	0.290	Passed (L/719)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.270 @ 5' 11"	0.579	Passed (L/514)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports					
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories			
1 - Column - HF	3.00"	3.00"	1.50"	1273	3195	4468	None			
2 - Column - HF	5.50"	5.50"	1.50"	1318	3308	4626	Blocking			
Blocking Panels are assumed to carry no load	annlied dire	Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 1" o/c	
Bottom Edge (Lu)	12' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 1/2"	N/A	17.2		
1 - Uniform (PSF)	0 to 12' 1/2" (Top)	9'	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, B8 - Family Room Flush Beam, Grid C 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7422 @ 3 1/2"	16656 (5.00")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6048 @ 1' 8"	13581	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	31270 @ 9'	38299	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.495 @ 9'	0.581	Passed (L/422)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.658 @ 9'	0.871	Passed (L/318)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 17' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column - HF	5.00"	5.00"	2.23"	1842	5580	7422	None
2 - Column - HF	5.00"	5.00"	2.23"	1842	5580	7422	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' o/c	
Bottom Edge (Lu)	18' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18'	N/A	18.7		
1 - Uniform (PSF)	0 to 18' (Top)	15' 6"	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, P1 - Garage Header Post 1 piece(s) 6 x 6 DF No.1

Post Height: 8'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35%)		
Compression (lbs)	12264	24796	Passed (49%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	12461	898425	Passed (1%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	1
Base	Plate		Steel	E
				. 1
Max Unbraced Length	l Length		Comments	
Full Member Length			No bracing assumed.	

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Snow	
Vertical Loads	(0.90)	(1.00)	(1.15)	Comments
1 - Point (Ib)	3870	2262	885	Linked from: B1 - Existing Garage Header, 9'-6", Support 1
2 - Point (lb)	3870	2262	885	Linked from: B1 - Existing Garage Header, 9'-6", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com
······································

Job Notes

lean D2 Carago Wall Dea

Main Floor, P2 - Garage Wall Post 1 piece(s) 6 x 6 DF No.1

T piece(s) 6 x 6 D

Wall Height: 8'

Member Height: 7' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (33%)		
Compression (lbs)	18167	28163	Passed (65%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	18167	18906	Passed (96%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	41			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	36	5485	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	79 @ mid-span	4437	Passed (2%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.05 @ mid-span	0.76	Passed (L/1925)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.85	1	Passed (85%)	1.15	1.0 D + 0.75 L + 0.75 S

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Douglas Fir-Larch	Member Type : Column
Base	2X		Douglas Fir-Larch	Building Code : IBC 2018 Design Methodology : ASD
Max Unbraced Length		Comments		
1'				

Drawing is Conceptual

Lateral Connections					
Supports	Connector	Type/Model	Quantity	Connector Nailing	
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A	
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A	

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Load	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	N/A	8144	7832	5532	Steel Beam

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	18.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area

determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, P3 - Living Room Wall Post, Grid 1 1 piece(s) 6 x 6 DF No.1

Wall Height: 8'

Member Height: 7' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (33%)		
Compression (lbs)	11240	28163	Passed (40%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	11240	12251	Passed (92%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	41			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	36	5485	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	79 @ mid-span	4437	Passed (2%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.03 @ mid-span	0.76	Passed (L/3261)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.38	1	Passed (38%)	1.15	1.0 D + 1.0 S

• Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports Top	Type Dbl 2>		Material Hem Fir	System : Wall Member Type : Column
Base	2X		Hem Fir	Building Code : IBC 2018 Design Methodology : ASD
Max Unbraced Length	praced Length		Comments	
7' 7 1/2"				

Drawing is Conceptual

Lateral Connections						
Supports	Connector	Type/Model	Quantity	Connector Nailing		
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.15)	Comments
1 - Point (lb)	N/A	1100	1200	Deck Roof Beam
2 - Point (lb)	N/A	5659	3281	Linked from: RB - Living Room Roof Beam, Grid B, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	18.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area

determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, P4 - Living Room Wall Post, Grid 3 1 piece(s) 4 x 6 HF No.2

Wall Height: 15'

Member Height: 14' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (64%)		
Compression (lbs)	2457	6917	Passed (36%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	2457	7796	Passed (32%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	73			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	68	3080	Passed (2%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	267 @ mid-span	2558	Passed (10%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.14 @ mid-span	1.46	Passed (L/1225)		1.0 D + 0.6 W
Bending/Compression	0.28	1	Passed (28%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Col
Base	2X	Hem Fir	Building Code : IBC Design Methodolog
			Design Methodolog

Max Unbraced Length	Comments		
8'			

lumn C 2018 gy : ASD

Drawing is Conceptual

Lateral Connections						
Supports	Connector	Type/Model	Quantity	Connector Nailing		
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Load	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
1 - Point (lb)	N/A	1692	765	Linked from: RB - Living Room Flush Beam, Grid 3, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	16.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Main Floor, P5 - Kitchen Wall Post, Grid D 1 piece(s) 6 x 8 DF No.1

Wall Height: 9' 6"

Member Height: 9' 1 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35%)		
Compression (lbs)	13834	37262	Passed (37%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	13834	16706	Passed (83%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	48			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	42	7480	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	111 @ mid-span	8193	Passed (1%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.03 @ mid-span	0.91	Passed (L/3828)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.32	1	Passed (32%)	1.15	1.0 D + 0.75 L + 0.75 S

Lateral deflection criteria: Wind (L/120)

Max Unbraced Length

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Point (Ib)	N/A	7107	2297		Linked from: B12 - Deck Edge Beam, Grid D, Support 2

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	17.7	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

8'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Basement, BP1 - Basement Wall Post

1 piece(s) 6 x 8 DF No.1

Wall Height: 10'

Member Height: 9' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35%)		
Compression (lbs)	16520	37262	Passed (44%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	16520	16706	Passed (99%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	51			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	44	7480	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	122 @ mid-span	8193	Passed (1%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.04 @ mid-span	0.96	Passed (L/3061)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.43	1	Passed (43%)	1.15	1.0 D + 0.75 L + 0.75 S

• Lateral deflection criteria: Wind (L/120)

Max Unbraced Length

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Snow	
Vertical Load	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	N/A	8000	4360	7000	Post Above

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	17.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

8'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Basement, BP2 - Basement Corner Wall Post 1 piece(s) 6 x 6 DF No.1

Wall Height: 10'

Member Height: 9' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (42%)		
Compression (lbs)	6400	21697	Passed (29%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	6400	12251	Passed (52%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	51			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	46	5485	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	122 @ mid-span	4437	Passed (3%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.03 @ mid-span	0.96	Passed (L/3990)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr
Bending/Compression	0.22	1	Passed (22%)	1.00	1.0 D + 1.0 L

Comments

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Hem Fir	Member Type : Column
Base	2X	Hem Fir	Building Code : IBC 2018 Design Methodology : ASD
Base	2X	Hem Fir	

Drawing is Conceptual

Lateral Connectio	ons			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly

		Dead	Floor Live	
Vertical Load	Tributary Width	(0.90)	(1.00)	Comments
1 - Point (Ib)	N/A	1720	4680	Deck Beam

Max Unbraced Length

8'

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	17.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Maxwell Skotheim Ouantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com	

Basement, BP3 - Deck Post 1 piece(s) 6 x 6 DF No.1

Post Height: 10' 6"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	9410	19871	Passed (47%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	9410	898425	Passed (1%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	1
Base	Plate		Steel	
				. 1
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Vertical Load	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	2634	6776	Linked from: B5 - Deck Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Jo Maxwell Skotheim Quantum Consulting Engineers (206) 957-3906 MSkotheim@quantumce.com

Job Notes

Steel Beam		Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINE	EERS	(c) ENERCALC INC 1983-202
DESCRIPTION: Roof RB6 - Steel Beam over Master Bedroom, 31ft		
CODE REFERENCES		
Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16		
Load Combination Set : IBC 2018		
Material Properties		
Analysis Method Allowable Strength Design	Fy : Steel Yield :	50.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis : Major Axis Bending		
D(0.250) S(0.3750)		
\$ \$	¢	×
W10x68		× ×
Span = 31.0 ft		
Applied Loads Servic	e loads entered. Load Fac	tors will be applied for calculation

Beam self weight calculated and added to loading Uniform Load : D = 0.020, S = 0.030 ksf, Tributary Width = 12.50 ft, (Roof)

SIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.391 : 1	Maximum Shear Stress Ratio =	0.110 : 1
Section used for this span	W10x68	Section used for this span	W10x68
Ma : Applied	83.256 k-ft	Va : Applied	10.743 k
Mn / Omega : Allowable	212.824 k-ft	Vn/Omega : Allowable	97.760 k
Load Combination	+D+S	Load Combination Location of maximum on span	+D+S 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.685 in Ratio = 0 in Ratio = 1.266 in Ratio = 0 in Ratio =	542 >=360. Span: 1 : S Only 0 <360.0 n/a 294 >=240. Span: 1 : +D+S 0 <240.0 n/a	

Load Combination		Max Stres	s Ratios		Su	mmary of Mc	ment Value	es	Summar	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	x/Omega Cb Rm	Va Max	VnxVnx/C	Omega
D Only											
Dsgn. L = 30.91 ft	1	0.180	0.050	38.21		38.21	355.42	212.82 1.00 1.00	4.93	146.64	97.76
Dsgn. L = 0.09 ft	1	0.002	0.050	0.44		0.44	355.42	212.82 1.00 1.00	4.93	146.64	97.76
+D+S											
Dsgn. L = 30.91 ft	1	0.391	0.110	83.26		83.26	355.42	212.82 1.00 1.00	10.74	146.64	97.76
Dsgn. L = 0.09 ft	1	0.004	0.110	0.95		0.95	355.42	212.82 1.00 1.00	10.74	146.64	97.76
+D+0.750S											
Dsgn. L = 30.91 ft	1	0.338	0.095	71.99		71.99	355.42	212.82 1.00 1.00	9.29	146.64	97.76
Dsgn. L = 0.09 ft	1	0.004	0.095	0.82		0.82	355.42	212.82 1.00 1.00	9.29	146.64	97.76
+0.60D											
Dsgn. L = 30.91 ft	1	0.108	0.030	22.93		22.93	355.42	212.82 1.00 1.00	2.96	146.64	97.76
Dsgn. L = 0.09 ft	1	0.001	0.030	0.26		0.26	355.42	212.82 1.00 1.00	2.96	146.64	97.76
Overall Maximum	Deflectio	ons									
Load Combination		Span M	ax. "-" De	fl Location	in Span	Load Con	nbination	Max	. "+" Defl L	ocation in	Span
+D+S		1	1.266	62 ⁻	15.589				0.0000	0.0	000
Vertical Reactions					Suppo	rt notation : F	ar left is # [.]	Values	in KIPS		

1010	1	1.2002	10.000	
Vertical Reactions			Suppo	٥r
Load Combination		Support 1	Support 2	
Max Upward from all Loa	d Conditions	10.743	10.743	
Max Upward from Load C	Combinations	10.743	10.743	
Max Upward from Load C	Cases	5.813	5.813	

Steel Beam			Project File: Hong Kao.ec
LIC# : KW-06016450, Build:20.23.05.25	QUANT	TUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-2
DESCRIPTION: Roof RB6 - Ste	el Beam over Ma	ster Bedroom, 31ft	
Vertical Reactions		Support notation : Far le	eft is # Values in KIPS
Load Combination	Support 1 Su	upport 2	
D Only	4.930	4.930	
+D+S	10.743	10.743	
+D+0.750S	9.290	9.290	
+0.60D	2.958	2.958	

5.813

5.813

S Only

Steel Beam				Project File: Hong	Kao.ec6
LIC# : KW-06016450, Build		QUANTUM CONSULTING ENGIN	EERS	(c) ENERCALC INC	1983-202
DESCRIPTION: F	Roof RB7 - Steel E	Beam over Deck, 31ft			
CODE REFEREN	CES				
Calculations per AISC	360-16, IBC 2018,	CBC 2019, ASCE 7-16			
Load Combination Se	et : IBC 2018				
Naterial Properties					
	wable Strength Desig		Fy : Steel Yield :	50.0 ksi	
Beam Bracing : Bea	am is Fully Braced a	against lateral-torsional buckling	E: Modulus :	29,000.0 ksi	
Bending Axis : Maj	or Axis Bending				
		D(0.0750) S(0.1125)			
¢	¢	2(0.0.00), 2(0.1.20)	¢		*
					-*
		W10x33			
		Span = 31.0 ft			
•					
Applied Loads		Servic	e loads entered. Load Fac	tors will be applied for ca	lculations

Beam self weight calculated and added to loading Uniform Load : D = 0.020, S = 0.030 ksf, Tributary Width = 3.750 ft, (Roof)

ESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.274 : 1	Maximum Shear Stress Ratio =	0.061 : 1
Section used for this span	W10x33	Section used for this span	W10x33
Ma : Applied	26.494 k-ft	Va : Applied	3.419 k
Mn / Omega : Allowable	96.806 k-ft	Vn/Omega : Allowable	56.434 k
Load Combination	+D+S	Load Combination Location of maximum on span	+D+S 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.473 in Ratio = 0 in Ratio = 0.928 in Ratio = 0 in Ratio =	785 >=240. Span: 1 : S Only 0 <240.0	

Load Combination		Max Stres	s Ratios		Su	mmary of Mc	oment Values	S	Summai	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx/	Omega Cb Rm	Va Max	VnxVnx/0	Omega
D Only											
Dsgn. L = 30.91 ft	1	0.134	0.030	12.98		12.98	161.67	96.81 1.00 1.00	1.67	84.65	56.43
Dsgn. L = 0.09 ft	1	0.002	0.030	0.15		0.15	161.67	96.81 1.00 1.00	1.67	84.65	56.43
+D+S											
Dsgn. L = 30.91 ft	1	0.274	0.061	26.49		26.49	161.67	96.81 1.00 1.00	3.42	84.65	56.43
Dsgn. L = 0.09 ft	1	0.003	0.061	0.30		0.30	161.67	96.81 1.00 1.00	3.42	84.65	56.43
+D+0.750S											
Dsgn. L = 30.91 ft	1	0.239	0.053	23.12		23.12	161.67	96.81 1.00 1.00	2.98	84.65	56.43
Dsgn. L = 0.09 ft	1	0.003	0.053	0.26		0.26	161.67	96.81 1.00 1.00	2.98	84.65	56.43
+0.60D											
Dsgn. L = 30.91 ft	1	0.080	0.018	7.79		7.79	161.67	96.81 1.00 1.00	1.00	84.65	56.43
Dsgn. L = 0.09 ft	1	0.001	0.018	0.09		0.09	161.67	96.81 1.00 1.00	1.00	84.65	56.43
Overall Maximum	Deflectio	ons									
Load Combination		Span Ma	ax. "-" De	efl Location	in Span	Load Con	nbination	Ma	x. "+" Defl L	ocation in	Span
+D+S		1	0.928	34 [,]	15.589				0.0000	0.0	000
Vertical Reactions					Suppo	rt notation : F	ar left is # [.]	Value	s in KIPS		
Load Combination			Supp	ort 1 Suppo	ort 2						
Max Upward from all	Load Con	ditions	3	.419 3.	419						

Max Upward from Load Combinations	3.419	3.419
Max Upward from Load Cases	1.744	1.744

Steel Beam			Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUAN	TUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Roof RB7 - Ste	el Beam over De	eck, 31ft	
Vertical Reactions		Support notation : Far left is #	Values in KIPS
Load Combination	Support 1 S	Support 2	
D Only	1.675	1.675	
+D+S	3.419	3.419	
+D+0.750S	2.983	2.983	
+0.60D	1.005	1.005	
S Only	1.744	1.744	

			Project File: Hong Kao.ec6
LIC# : KW-06016450	,	-	(c) ENERCALC INC 1983-202
DESCRIPTION	N: Upper Floor UB2a - Floor Steel Beam over Garage	e, 32'-0"	
CODE REFER	RENCES		
	AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 on Set : IBC 2018		
Naterial Proper	rties		
	d Allowable Strength Design	Fy : Steel Yield :	50.0 ksi
	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis :	Major Axis Bending		
	D(0.120) S(0.180)		
	D(0.1320) L(0.360)	0.240) S(0.360)	Ŷ
\$ 	D(0.0720) L(0.240)		
√	D(0.5280)	2 1 4 4 0 \ L (0 4 8 0 \	
_	¢	0.1440) L(0.480)	×
	W10x88		
1	Span = 32.0 ft		1
pplied Loads	Ser	vice loads entered. Load Fac	tors will be applied for calculation
Beam self we	eight calculated and added to loading		
Load for Spa	Load : $D = 0.0120$, $L = 0.040$ ksf, Extent = 9.0>> 32.0 ft,	Tributary Width = 12.0 ft,	(Floor)
Load for Spa		Tributary Width = 12.0 ft,	(Floor)
Load for Spa Uniform L			
Load for Spa Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft,		
Load for Spa Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft,	dth = 11.0 ft, (Wall w/ ven	eer)
Load for Spa Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi	dth = 11.0 ft, (Wall w/ ven	eer)
Load for Spa Uniform L Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi	dth = 11.0 ft, (Wall w/ ven Fributary Width = 6.0 ft, (F	eer) loor)
Load for Spa Uniform L Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi Load : D = 0.0120, L = 0.040 ksf, Extent = 0.0>> 9.0 ft, T	dth = 11.0 ft, (Wall w/ ven Fributary Width = 6.0 ft, (F	eer) loor)
Load for Spa Uniform L Uniform L Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi Load : D = 0.0120, L = 0.040 ksf, Extent = 0.0>> 9.0 ft, T Load : D = 0.0220, L = 0.060 ksf, Extent = 0.0>> 9.0 ft, T	dth = 11.0 ft, (Wall w/ ven Fributary Width = 6.0 ft, (F Fributary Width = 6.0 ft, (R	eer) loor) oof Deck)
Load for Spa Uniform L Uniform L Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi Load : D = 0.0120, L = 0.040 ksf, Extent = 0.0>> 9.0 ft, T	dth = 11.0 ft, (Wall w/ ven Fributary Width = 6.0 ft, (F Fributary Width = 6.0 ft, (R	eer) loor) oof Deck)
Load for Spa Uniform L Uniform L Uniform L Uniform L	Load : D = 0.0120, L = 0.040 ksf, Extent = 9.0>> 32.0 ft, Load : D = 0.0480 ksf, Extent = 0.0>> 9.0 ft, Tributary Wi Load : D = 0.0120, L = 0.040 ksf, Extent = 0.0>> 9.0 ft, T Load : D = 0.0220, L = 0.060 ksf, Extent = 0.0>> 9.0 ft, T	dth = 11.0 ft, (Wall w/ ven Fributary Width = 6.0 ft, (F Fributary Width = 6.0 ft, (R Fributary Width = 12.0 ft, (eer) loor) oof Deck) Roof)

DESIGN SUMMARY

SIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.531 : 1	Maximum	Shear Stress Ratio =	0.160 : 1
Section used for this span	W10x88	Sec	ction used for this span	W10x88
Ma : Applied	149.751 k-ft		Va : Applied	20.904 k
Mn / Omega : Allowable	281.936 k-ft		Vn/Omega : Allowable	130.680 k
Load Combination	+D+0.750L+0.750S		d Combination ation of maximum on span	+D+0.750L+0.750S 0.000 ft
Span # where maximum occurs	Span # 1	Spa	in # where maximum occurs	Span # 1
Maximum Deflection				
Max Downward Transient Deflection	0.767 in Ratio =	500 >=240.	Span: 1 : L Only	
Max Upward Transient Deflection	0 in Ratio =	0 <240.0	n/a	
Max Downward Total Deflection	1.803 in Ratio =	213 >=180		
Max Upward Total Deflection	0 in Ratio =	<mark>0</mark> <180	n/a	

Load Combination		Max Stres	s Ratios	tios Summary of Moment Values Summary of Sh							· Values
Segment Leng	th Span #	M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	x/Omega Cb Rm	Va Max	VnxVnx/	Omega
D Only											
Dsgn. L = 32.0	0 ft 1	0.249	0.085	70.26		70.26	470.83	281.94 1.00 1.00	11.17	196.02	130.68
+D+L											
Dsgn. L = 32.0	0 ft 1	0.475	0.151	134.05		134.05	470.83	281.94 1.00 1.00	19.78	196.02	130.68
+D+S											
Dsgn. L = 32.0	0 ft 1	0.399	0.119	112.41		112.41	470.83	281.94 1.00 1.00	15.54	196.02	130.68
+D+0.750L											
Dsgn. L = 32.0	0 ft 1	0.419	0.135	118.09		118.09	470.83	281.94 1.00 1.00	17.63	196.02	130.68

Steel Beam		Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Floor UB2a	- Floor Steel Beam over Garage, 32'-0"	

Load Combination		Max St	ress Ratios	6	Su	mmary of Mo	oment Valu	es		Summar	y of Shea	r Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mn	x/Omega Cb	Rm	Va Max	VnxVnx/	Omega
+D+0.750L+0.750S												
Dsgn. L = 32.00 ft	1	0.53	31 0.16	0 149.7	5	149.75	470.83	281.94 1.00	0 1.00	20.90	196.02	130.68
+0.60D												
Dsgn. L = 32.00 ft	1	0.15	50 0.05	1 42.1	6	42.16	470.83	281.94 1.00	0 1.00	6.70	196.02	130.68
Overall Maximum	Deflectio	ons										
Load Combination		Span	Max. "-" [Defl Locati	on in Span	Load Con	nbination		Max	. "+" Defl L	ocation in	Span
+D+0.750L+0.750S		1	1.8	033	15.909					0.0000	0.	000
Vertical Reactions					Suppo	ort notation : F	ar left is #		Values	in KIPS		
Load Combination			Sup	port 1 Sup	port 2							
Max Upward from all	Load Con	ditions	2	20.904	18.167							
Max Upward from Lo	ad Combin	nations	2	20.904	18.167							
Max Upward from Lo	ad Cases		1	1.172	8.144							
D Only			1	1.172	8.144							
+D+L			1	9.780	15.976							
+D+S			1	5.540	13.677							
+D+0.750L			1	7.628	14.018							
+D+0.750L+0.750S			2	20.904	18.167							
+0.60D				6.703	4.887							
L Only				8.608	7.832							
S Only				4.368	5.532							

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 6.50 ft, (Floor) Uniform Load : D = 0.020, S = 0.030 ksf, Tributary Width = 6.50 ft, (Roof)

- Uniform Load : D = 0.0480 ksf, Tributary Width = 11.0 ft, (Wall w/ veneer) Uniform Load : D = 0.0330, S = 0.030 ksf, Tributary Width = 5.50 ft, (Roof Deck)

DESIGN SUMMARY

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.739: 1 2-1.75x11.87		hear Stress Ratio used for this span	=	0.565:1 2-1.75x11.87
fb: Actual	=	2,213.75psi		fv: Actual	=	185.10 psi
F'b	=	2,994.26psi		F'v	=	327.75 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+0.750L+0.750S 4.665ft Span # 1	Locatio	ombination n of maximum on span where maximum occurs	= =	+D+0.750L+0.750S 8.343ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflectior Max Downward Total Deflection Max Upward Total Deflection		0.067 in Ratio = 0 in Ratio = 0.258 in Ratio = 0 in Ratio =	1682 >=360 0 <360 434 >=180 0 <180	Span: 1 : S Only n/a Span: 1 : +D+0.750L+0.7 n/a	750S	

Load Combination		Max St	tress Ra	tios								Momer	nt Values		S	hear Vali	ues
Segment Length	Span #	М	V	CD	СМ	с _t	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.630	0.481	0.90	1.00	1.00	1.00	1.001	1.00	1.00	1.00	10.12	1,475.6	2,343.3	3.42	123.4	256.5
+D+L					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.725	0.554	1.00	1.00	1.00	1.00	1.001	1.00	1.00	1.00	12.94	1,888.3	2,603.7	4.37	157.9	285.0
+D+S					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.684	0.522	1.15	1.00	1.00	1.00	1.001	1.00	1.00	1.00	14.03	2,047.1	2,994.3	4.74	171.2	327.8
+D+0.750L					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.548	0.419	1.25	1.00	1.00	1.00	1.001	1.00	1.00	1.00	12.24	1,785.2	3,254.6	4.14	149.3	356.3

Wood Beam

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS
DESCRIPTION: Upper Floor UB2b - Floor Beam over Utility, 9'-4"

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Momen	t Values		Sł	near Valu	Jes
Segment Length	Span #	М	V	CD	СМ	C _t (CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
+D+0.750L+0.750S					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.739	0.565	1.15	1.00	1.00	1.00	1.001	1.00	1.00	1.00	15.18	2,213.7	2,994.3	5.13	185.1	327.8
+0.60D					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.330 ft	1	0.213	0.162	1.60	1.00	1.00	1.00	1.001	1.00	1.00	1.00	6.07	885.4	4,165.9	2.05	74.0	456.0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Locat	ion in Span	Load Combination	Max. "+" Defl Loca	ation in Span
+D+0.750L+0.750S	1	0.2577	4.699		0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	Support 2			
Max Upward from all Load C	onditions	6.506	6.506			
Max Upward from Load Corr	nbinations	6.506	6.506			
Max Upward from Load Case	es	4.337	4.337			
D Only		4.337	4.337			
+D+L		5.550	5.550			
+D+S		6.016	6.016			
+D+0.750L		5.246	5.246			
+D+0.750L+0.750S		6.506	6.506			
+0.60D		2.602	2.602			
L Only		1.213	1.213			
S Only		1.679	1.679			

Steel Beam			Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEE	ERS	(c) ENERCALC INC 1983-202
DESCRIPTION: Upper Floor UB6 - Floor S	Steel Beam, 30'-9"		
CODE REFERENCES			
Calculations per AISC 360-16, IBC 2018, CBC 2	019, ASCE 7-16		
Load Combination Set : IBC 2018			
Material Properties			
Analysis Method Allowable Strength Design		Fy : Steel Yield :	50.0 ksi
Beam Bracing: Beam is Fully Braced against I	ateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis : Major Axis Bending			
D(1.320) L(2.0)	D(1.320)(0(2230) L(0.410)	\$	`
			×
	W10x68		
	Span = 30.750 ft		Ē
•			
Applied Loads		lands and and F ac	tors will be applied for calculation

Applied Loads

Service loads entered. Load Factors will be applied for calculations

Beam self weight calculated and added to loading Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 10.250 ft, (Floor)

Point Load : D = 1.320, L = 2.0 k @ 0.750 ft, (Deck Beam)

Point Load : D = 1.320, L = 2.0 k @ 13.250 ft, (Deck Beam)

ESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.452 : 1	Maximum Shear Stress Ratio =	0.147 : 1
Section used for this span	W10x68	Section used for this span	W10x68
Ma : Applied	96.127 k-ft	Va : Applied	14.369 k
Mn / Omega : Allowable	212.824 k-ft	Vn/Omega : Allowable	97.760 k
Load Combination	+D+L	Load Combination Location of maximum on span	+D+L 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	0.916 in Ratio = 0 in Ratio =	402 >=360. Span: 1 : L Only 0 <360.0 n/a	
Max Downward Total Deflection Max Upward Total Deflection	1.383 in Ratio = 0 in Ratio =	267 >=240. Span: 1 : +D+L 0 <240.0 n/a	

Load Combination		Max Stres	s Ratios		Su	mmary of Mo	ment Value	es		Summar	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	⟨/Omega Cb	Rm	Va Max	VnxVnx/0	Omega
D Only												
Dsgn. L = 30.75 ft	1	0.153	0.051	32.66		32.66	355.42	212.82 1.00	1.00	4.98	146.64	97.7
+D+L												
Dsgn. L = 30.75 ft	1	0.452	0.147	96.13		96.13	355.42	212.82 1.00	1.00	14.37	146.64	97.7
+D+0.750L												
Dsgn. L = 30.75 ft	1	0.377	0.123	80.26		80.26	355.42	212.82 1.00	1.00	12.02	146.64	97.7
+0.60D												
Dsgn. L = 30.75 ft	1	0.092	0.031	19.59		19.59	355.42	212.82 1.00	1.00	2.99	146.64	97.7
Overall Maximum	Deflectio	ons										
Load Combination		Span M	ax. "-" De	efl Location	in Span	Load Con	nbination		Max	. "+" Defl L	ocation in	Span
+D+L		1	1.382	28	15.199					0.0000	0.0	000
Vertical Reactions					Suppo	rt notation : F	ar left is # [.]		Values	in KIPS		
Load Combination			Supp	ort 1 Supp	ort 2							
Max Upward from all	Load Con	ditions	14	.369 10).752							
Max Upward from Lo	ad Combir	nations	14	.369 10	.752							

Steel Beam				Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUAN	ITUM CONSL	ILTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Floor UE	36 - Floor Steel E	Beam, 30'-	9"	
Vertical Reactions		Sup	port notation : Far left is #	Values in KIPS
Load Combination	Support 1 S	Support 2		
Max Upward from Load Cases	9.393	7.214		
D Only	4.976	3.538		
+D+L	14.369	10.752		
+D+0.750L	12.021	8.948		
+0.60D	2.985	2.123		
L Only	9.393	7.214		

Steel Beam		Project File: Hong k	Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINE		(c) ENERCALC INC	1983-202
DESCRIPTION: Upper Floor UB8 - Flush Header at Kitchen Window	, 15'-4"		
ODE REFERENCES			
Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 _oad Combination Set : IBC 2018			
aterial Properties			
Analysis Method Allowable Strength Design	Fy : Steel Yield :	46.0 ksi	
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi	
Bending Axis : Major Axis Bending			
¢	4		÷
HSS7x5x3/8			\square
Span = 15.333 ft			
			I
pplied Loads Servic	e loads entered. Load Fac	tors will be applied for ca	lculation
Beam self weight calculated and added to loading			
Uniform Load : D = 0.0220, L = 0.060 ksf, Tributary Width = 4.880 ft,			

ESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.313 : 1	Maximum S	Shear Stress Ratio =	0.048 : 1
Section used for this span	HSS7x5x3/8	Sec	tion used for this span	HSS7x5x3/8
Ma : Applied	12.567 k-ft		Va : Applied	3.279 k
Mn / Omega : Allowable	40.170 k-ft		Vn/Omega : Allowable	68.673 k
Load Combination	+D+L		l Combination tion of maximum on span	+D+L 0.000 ft
Span # where maximum occurs	Span # 1	Spar	n # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection	0.255 in Ratio =	722 >=360.	Span: 1 : L Only	
Max Upward Transient Deflection	0 in Ratio =	0 <360.0	n/a	
Max Downward Total Deflection Max Upward Total Deflection	0.372 in Ratio = 0 in Ratio =	494 >=240. 0 <240.0	Span: 1 : +D+L n/a	

Load Combination		Max Stres	s Ratios		Su	mmary of Mo	ment Value	S		Summar	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb	Rm	Va Max	VnxVnx/0	Omega
D Only												
Dsgn. L = 15.33 ft	1	0.099	0.015	3.96		3.96	67.08	40.17 1.00	0 1.00	1.03	114.68	68.6
+D+L												
Dsgn. L = 15.33 ft	1	0.313	0.048	12.57		12.57	67.08	40.17 1.00	0 1.00	3.28	114.68	68.6
+D+0.750L												
Dsgn. L = 15.33 ft	1	0.259	0.040	10.42		10.42	67.08	40.17 1.00	0 1.00	2.72	114.68	68.6
+0.60D												
Dsgn. L = 15.33 ft	1	0.059	0.009	2.38		2.38	67.08	40.17 1.00	0 1.00	0.62	114.68	68.6
Overall Maximum	Deflectio	ns										
Load Combination		Span M	ax. "-" De	efl Location	n in Span	Load Con	nbination		Max	. "+" Defl L	ocation in	Span
+D+L		1	0.372	22	7.710					0.0000	0.0	000
Vertical Reactions					Suppo	rt notation : F	ar left is # [.]		Values	in KIPS		
Load Combination			Suppo	ort 1 Supp	ort 2							
Max Upward from all	Load Con	ditions	3	.279 3	3.279							
Max Upward from Lo	ad Combir	ations	3	.279 3	3.279							
Max Upward from Lo	ad Cases		2	.245 2	2.245							
D Only			1	.034 1	.034							
+D+L			3	.279 3	3.279							
+D+0.750L			2	.717 2	2.717							
+0.60D			0	.620 0	.620							

Steel Beam		Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.2	5 QUANTUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Flo	oor UB8 - Flush Header at Kitchen Window , 15'-4"	
Vertical Reactions	Support notation : Far left is #	Values in KIPS
Load Combination	Support 1 Support 2	
L Only	2.245 2.245	·

Steel Beam			Project File: Hong Kao.ec6
LIC# : KW-06016450,			(c) ENERCALC INC 1983-202
DESCRIPTION	: Upper Floor UB9 - Flush Header at Kitchen Win	idow , 17'-0"	
CODE REFER	ENCES		
Calculations per A	AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16		
Load Combination	n Set : IBC 2018		
Naterial Propert	ties		
Analysis Method	Allowable Strength Design	Fy : Steel Yield :	46.0 ksi
Beam Bracing :	Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis :	Major Axis Bending		
D(0 <u>.07150) L(0.</u>	1950)		
` \$ \$ \$ \$		D) L(0.1050)	
	 ✓ ✓ 	♦ ♦	×
	HSS7x3x3/8		<u> </u>
	Span = 17.50	ft	1
			•
Applied Loads			tors will be applied for calculation

Beam self weight calculated and added to loading Load for Span Number 1

Uniform Load : D = 0.0220, L = 0.060 ksf, Extent = 2.0 -->> 17.50 ft, Tributary Width = 1.750 ft, (Deck)

Uniform Load : D = 0.0220, L = 0.060 ksf, Extent = 0.0 -->> 2.0 ft, Tributary Width = 3.250 ft, (Deck)

SIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.220 : 1	Maximum Shear Stress Ratio =	0.025 : 1
Section used for this span	HSS7x3x3/8	Section used for this span	HSS7x3x3/8
Ma : Applied	6.473 k-ft	Va : Applied	1.683 k
Mn / Omega : Allowable	29.381 k-ft	Vn/Omega : Allowable	68.673 k
Load Combination	+D+L	Load Combination Location of maximum on span	+D+L 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.231 in Ratio = 0 in Ratio = 0.364 in Ratio = 0 in Ratio =	908 >=360. Span: 1 : L Only 0 <360.0 n/a 577 >=240. Span: 1 : +D+L 0 <240.0 n/a	

Load Combination		Max Stres	ss Ratios		Su	immary of Mo	ment Value	S		Summar	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx/	Omega Cb	Rm	Va Max	VnxVnx/C	Omega
D Only												
Dsgn. L = 17.50 ft	1	0.080	0.009	2.36		2.36	49.07	29.38 1.00	0 1.00	0.59	114.68	68.67
+D+L												
Dsgn. L = 17.50 ft	1	0.220	0.025	6.47		6.47	49.07	29.38 1.00	0 1.00	1.68	114.68	68.67
+D+0.750L												
Dsgn. L = 17.50 ft	1	0.185	0.021	5.45		5.45	49.07	29.38 1.00	0 1.00	1.41	114.68	68.67
+0.60D												
Dsgn. L = 17.50 ft	1	0.048	0.005	1.42		1.42	49.07	29.38 1.00	0 1.00	0.36	114.68	68.67
Overall Maximum	Deflectio	ons										
Load Combination		Span M	lax. "-" De	fl Location	n in Span	Load Com	nbination		Max	. "+" Defl L	ocation in	Span
+D+L		1	0.363	38	8.750					0.0000	0.0	000
Vertical Reactions					Suppo	ort notation : F	ar left is #		Values	in KIPS		
Load Combination			Suppo	ort 1 Supp	ort 2							
Max Upward from all	Load Con	ditions	1	.683 1	.465							
Max Upward from Lo	ad Combir	nations	1	.683 1	.465							
Max Upward from Lo	ad Cases		1	.088 0	.929							
D Only			0	.595 C	.536							

Steel Beam			Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUANTUM	CONSULTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Flo	or UB9 - Flush Header at	Kitchen Window , 17'-0"	
Vertical Reactions		Support notation : Far left is #	Values in KIPS
Load Combination	Support 1 Support	ort 2	
+D+L	1.683 1.	465	
+D+0.750L	1.411 1.	233	
+0.60D	0.357 0.	322	
L Only	1.088 0.	929	

teel Beam				Project File: Hong Kao.ec
C# : KW-06016450, Build:20.23.05.25		ONSULTING ENGINEERS		(c) ENERCALC INC 1983-20
ESCRIPTION: Upper Floor UB1) - Cantilever Deck	beam, 7-0 Cant.		
DE REFERENCES				
alculations per AISC 360-16, IBC 201	3, CBC 2019, ASCE 7	-16		
ad Combination Set : IBC 2018				
terial Properties Analysis Method Allowable Strength Des			Fy : Steel Yield :	46.0 ksi
Beam Bracing : Beam is Fully Braced Bending Axis : Major Axis Bending		al buckling	E: Modulus :	29,000.0 ksi
D(0.13	75) L(0.3750)	D(0.1375) L(0.3750)	3270) L(0.8930) (0.13	375) L(0.3750)
Ý Ý	\$ \$	$\xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} \xrightarrow{\diamond} $	÷	\$ \$
				207vEv2/0
HSS7x5x3/8		HSS7x5x3/8		SS7x5x3/8
Span = 8.50	t	Span = 2.50 ft	Sp	an = 7.0 ft
•		• • • •		
olied Loads		Service load	ls entered. Load Facto	ors will be applied for calculation
Beam self weight calculated and add	led to loading			
Load for Span Number 1 Uniform Load : D = 0.0220, L =	0.060 ksf, Extent = 2.	50>> 8.50 ft, Tribut	ary Width = 6.250 f	t, (Deck)
Point Load : D = 0.0940, L = 0.	3130 k @ 2.50 ft, (Flu	sh Beam)		
Point Load : D = 1.520, L = 1.9	I0 k @ 2.50 ft, (Flush	Beam)		
Load for Span Number 2 Uniform Load : D = 0.0220, L =	0.060 ksf, Tributary \	Vidth = 6.250 ft, (Decł	<)	
Load for Span Number 3 Uniform Load : D = 0.0220, L =	0.060 ksf, Tributary \	Vidth = 6.250 ft, (Decl	<)	
Point Load : D = 0.3270, L = 0.	3930 k @ 1.0 ft, (Flusi	n Rim)		
	3930 k @ 1.0 ft, (Flusi	n Rim)		Design OK
SIGN SUMMARY Maximum Bending Stress Ratio =	0.360 : 1	Maximum Shear S		0.073 : 1
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	0.360 : 1 HSS7x5x3/8	Maximum Shear S Section use	d for this span	0.073:1 HSS7x5x3/8
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied	0.360 : 1 HSS7x5x3/8 14.450 k-ft	Maximum Shear S Section use Va : A	d for this span	0.073 : 1 HSS7x5x3/8 5.0 k
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	0.360 : 1 HSS7x5x3/8	Maximum Shear S Section use Va : A Vn/Or Load Comb	d for this span opplied mega : Allowable ination	0.073:1 HSS7x5x3/8 5.0 k 68.673 k +D+L
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable	0.360 : 1 HSS7x5x3/8 14.450 k-ft 40.170 k-ft	Maximum Shear S Section use Va : A Vn/Or Load Comb Location of	d for this span oplied nega : Allowable	0.073:1 HSS7x5x3/8 5.0 k 68.673 k
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs	0.360 : 1 HSS7x5x3/8 14.450 k-ft 40.170 k-ft +D+L	Maximum Shear S Section use Va : A Vn/Or Load Comb Location of	d for this span opplied mega : Allowable ination maximum on span	0.073 : 1 HSS7x5x3/8 5.0 k 68.673 k +D+L 0.000 ft
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection	0.360 : 1 HSS7x5x3/8 14.450 k-ft 40.170 k-ft +D+L Span # 2 0.218 in Ratio =	Maximum Shear S Section use Va : A Vn/Or Load Comb Location of Span # whe 770 >=360. Span	d for this span spplied mega : Allowable ination maximum on span re maximum occurs : 3 : L Only	0.073 : 1 HSS7x5x3/8 5.0 k 68.673 k +D+L 0.000 ft
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	0.360 : 1 HSS7x5x3/8 14.450 k-ft 40.170 k-ft +D+L Span # 2 0.218 in Ratio = -0.006 in Ratio =	Maximum Shear S Section use Va : A Vn/Or Load Comb Location of Span # whe 770 >=360. Span 4,943 >=360. Span	d for this span spplied mega : Allowable ination maximum on span re maximum occurs : 3 : L Only : 3 : L Only	0.073 : 1 HSS7x5x3/8 5.0 k 68.673 k +D+L 0.000 ft
SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection	0.360 : 1 HSS7x5x3/8 14.450 k-ft 40.170 k-ft +D+L Span # 2 0.218 in Ratio =	Maximum Shear S Section use Va : A Vn/Or Load Comb Location of Span # whe 770 >=360. Span 4,943 >=360. Span 533 >=240. Span	d for this span spplied mega : Allowable ination maximum on span re maximum occurs : 3 : L Only	0.073 : 1 HSS7x5x3/8 5.0 k 68.673 k +D+L 0.000 ft

Load Combina	ation		Max Stress Ratios			Summary of Moment Values					Summary of Shear Values		
Segment	Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	⟨/Omega Cb	Rm	Va Max	VnxVnx/	Omega
D Only													
Dsgn. L =	8.50 ft	1	0.080	0.020	3.20	-1.95	3.20	67.08	40.17 1.00	0 1.00	1.35	114.68	68.67
Dsgn. L =	2.50 ft	2	0.109	0.012	-0.00	-4.37	4.37	67.08	40.17 1.00	0 1.00	1.48	199.34	119.37
Dsgn. L =	7.00 ft	3	0.109	0.022		-4.37	4.37	67.08	40.17 1.00	0 1.00	1.48	114.68	68.67
+D+L Dsgn. L =	8.50 ft	1	0.204	0.056	8.19	-5.02	8.19	67.08	40.17 1.00	0 1.00	3.83	114.68	68.67

Steel Beam

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS
DESCRIPTION: Upper Floor UB10 - Cantilever Deck Beam, 7'-0" Cant.

Maximum Forces & Stresses for Load Combinations

Load Combina	ation		Max Stress	s Ratios		Sur	nmary of Mo	ment Value	es	Summar	Summary of Shear Values		
Segment	Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb Rm	Va Max	VnxVnx/	Omega	
Dsgn. L =	2.50 ft	2	0.360	0.042	-0.00	-14.45	14.45	67.08	40.17 1.00 1.0	5.00	199.34	119.37	
Dsgn. L =	7.00 ft	3	0.360	0.073		-14.45	14.45	67.08	40.17 1.00 1.0	5.00	114.68	68.67	
+D+0.750L													
Dsgn. L =	8.50 ft	1	0.173	0.047	6.95	-4.25	6.95	67.08	40.17 1.00 1.0) 3.21	114.68	68.67	
Dsgn. L =	2.50 ft	2	0.297	0.035	-0.00	-11.93	11.93	67.08	40.17 1.00 1.0) 4.12	199.34	119.37	
Dsgn. L =	7.00 ft	3	0.297	0.060		-11.93	11.93	67.08	40.17 1.00 1.0) 4.12	114.68	68.67	
+0.60D													
Dsgn. L =	8.50 ft	1	0.048	0.012	1.92	-1.17	1.92	67.08	40.17 1.00 1.0	0.81	114.68	68.67	
Dsgn. L =	2.50 ft	2	0.065	0.007	-0.00	-2.62	2.62	67.08	40.17 1.00 1.0	0.89	199.34	119.37	
Dsgn. L =	7.00 ft	3	0.065	0.013		-2.62	2.62	67.08	40.17 1.00 1.0	0.89	114.68	68.67	

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl L	ocation in S	pan Loa	ad Combination	Max. "+" Defl	Location in Spar
+D+L	1	0.0566	3.74	10		0.0000	0.000
	2	0.0000	3.74	40 +	D+L	-0.0090	1.367
+D+L	3	0.3152	7.00	00		0.0000	1.367
Vertical Reactions			S	upport nota	ntion : Far left is # [.]	Values in KIPS	
Load Combination		Support 1	Support 2	Support 3	Support 4		
Max Upward from all Load	Conditions	3.320	0.727	9.448			
Max Upward from Load Co	mbinations	3.320	0.727	9.448			
Max Upward from Load Ca	ses	2.003	0.593	6.792			
D Only		1.318	0.593	2.656			
+D+L		3.320	0.727	9.448			
+D+0.750L		2.820	0.693	7.750			
+0.60D		0.791	0.356	1.594			
L Only		2.003	0.134	6.792			

Steel Beam		Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINE	ERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Floor UB11 - Flush Header at Kitchen Window	v,13'-0"	
CODE REFERENCES		
Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018		
Iaterial Properties		
Analysis Method Allowable Strength Design	Fy : Steel Yield :	46.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Bending Axis : Major Axis Bending	E: Modulus :	29,000.0 ksi
D(0.0330) L(0.090)		D(0.0660) L(0.180)
▼	♦	$\overset{\diamond}{\overset{\diamond}}$
HSS7x3x1/4		HSS7x3x1/4
Span = 13.0 ft		Span = 2.0 ft
4		• • •
pplied Loads Service	loads entered Load Fac	tors will be applied for calculations

Beam self weight calculated and added to loading Load for Span Number 1

Uniform Load : D = 0.0220, L = 0.060 ksf, Tributary Width = 1.50 ft, (Deck)

Load for Span Number 2 Uniform Load : D = 0.0220, L = 0.060 ksf, Tributary Width = 3.0 ft, (Deck)

SIGN SUMMARY					Design OK
Maximum Bending Stress Ratio =	0.126 : 1	Ma	ximum S	hear Stress Ratio =	0.019 : 1
Section used for this span	HSS7x3x1/4		Sect	on used for this span	HSS7x3x1/4
Ma : Applied	2.673 k-ft			Va : Applied	0.9413 k
Mn / Omega : Allowable	21.164 k-ft			Vn/Omega : Allowable	48.528 k
Load Combination +D+L				Combination ion of maximum on span	+D+L 13.000 ft
Span # where maximum occurs	Span # 1		Span # where maximum occurs		Span # 1
Maximum Deflection					
Max Downward Transient Deflection	0.071 in Ratio =	2,208	>=360.	Span: 2 : L Only	
Max Upward Transient Deflection -0.031 in Ratio = 1.		1,561	>=360.	Span: 2 : L Only	
Max Downward Total Deflection	0.110 in Ratio =	1424	>=240.	Span: 2 : +D+L	
Max Upward Total Deflection	-0.048 in Ratio =	999	>=240.	Span: 2 : +D+L	

Load Combination	า		Max Stres	s Ratios		Sur	nmary of Mo	ment Value	es		Summar	y of Shear	Values
Segment Leng	gth	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb	Rm	Va Max	VnxVnx/0	Omega
D Only													
Dsgn. L = 13.0	00 ft	1	0.045	0.007	0.95	-0.16	0.95	35.34	21.16 1.00	1.00	0.33	81.04	48.53
Dsgn. L = 2.0	00 ft	2	0.008	0.003		-0.16	0.16	35.34	21.16 1.00	1.00	0.16	81.04	48.53
+D+L													
Dsgn. L = 13.0	00 ft	1	0.126	0.019	2.67	-0.52	2.67	35.34	21.16 1.00	1.00	0.94	81.04	48.53
Dsgn. L = 2.0	00 ft	2	0.025	0.011		-0.52	0.52	35.34	21.16 1.00	1.00	0.52	81.04	48.53
+D+0.750L													
Dsgn. L = 13.0	00 ft	1	0.106	0.016	2.24	-0.43	2.24	35.34	21.16 1.00	1.00	0.79	81.04	48.53
Dsgn. L = 2.0	00 ft	2	0.020	0.009		-0.43	0.43	35.34	21.16 1.00	1.00	0.43	81.04	48.53
+0.60D													
Dsgn. L = 13.0	00 ft	1	0.027	0.004	0.57	-0.10	0.57	35.34	21.16 1.00	1.00	0.20	81.04	48.53
Dsgn. L = 2.0	00 ft	2	0.005	0.002		-0.10	0.10	35.34	21.16 1.00	1.00	0.10	81.04	48.53
Overall Maxim	um D)eflectio	ns										

Load Combination	Span	Max. "-" Defl Loca	ation in Span	Load Combination	Max. "+" Defl Loc	ation in Span
+D+L	1	0.1096	6.396		0.0000	0.000
	2	0.0000	6.396	+D+L	-0.0481	2.000

Steel Beam				Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QU	ANTUM CON	ISULTING ENGINEERS	(c) ENERCALC INC 1983-2023
DESCRIPTION: Upper Floor UB11	- Flush Hea	der at Ki	tchen Window , 13'-0"	
Vertical Reactions		S	upport notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Max Upward from all Load Conditions	0.861	1.465		
Max Upward from Load Combinations	0.861	1.465		
Max Upward from Load Cases	0.557	0.973		
D Only	0.303	0.492		
+D+L	0.861	1.465		
+D+0.750L	0.721	1.221		
+0.60D	0.182	0.295		
L Only	0.557	0.973		

eel Beam			Project File: Hong Kao.ec6
# : KW-06016450, Build:20.23.05.25		IGINEERS	(c) ENERCALC INC 1983-20
ESCRIPTION: Main Floor B7 - D	eck Beam, Grid C		
DE REFERENCES			
Iculations per AISC 360-16, IBC 2018	, CBC 2019, ASCE 7-16		
ad Combination Set : IBC 2018			
erial Properties			
Analysis Method Allowable Strength Desig		Fy : Steel Yield :	46.0 ksi
Beam Bracing : Beam is Fully Braced	against lateral-torsional buckling	E: Modulus :	29,000.0 ksi
Bending Axis : Major Axis Bending			
D(0.180) L(0.60)	D(0.690) L(0.390)	D(0 1430) I (0 300)	
		D(0.1430) L(0.390)	D(0.1430) L(0.390)
HSS	9x5x3/8	HSS9x5x3/8	HSS9x5x3/8
Span =	= 14.50 ft	Span = 3.0 ft	Span = 7.250 ft
	14.00 H		Spail 7.200 it
1			
lied Loads	S	arvice loads entered. Load Fa	ctors will be applied for calculation
Beam self weight calculated and add			
Load for Span Number 1	ed to loading		
Uniform Load : $D = 0.0220$, $L =$	0.060 ksf Extent = $9.0 - >> 14.50$	ft Tributary Width - 6 50	ft (Deels)
· · · · · · · · · · · · · · · · · · ·		11, 11001ary Width = 0.50	II, (Deck)
		n, mbulary whulf = 0.50	II, (Deck)
	0.040 ksf, Extent = 0.0>> 9.0 ft,	•	
		•	
	0.040 ksf, Extent = 0.0>> 9.0 ft,	•	
Uniform Load : D = 0.0120, L = Point Load : D = 0.590, L = 0.13	0.040 ksf, Extent = 0.0>> 9.0 ft, 80 k @ 8.670 ft, (Post Above)	•	
Uniform Load : D = 0.0120, L =	0.040 ksf, Extent = 0.0>> 9.0 ft, 80 k @ 8.670 ft, (Post Above)	•	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.130$ Point Load : $D = 0.590$, $L = 0.130$ Point Load : $D = 2.660$, $L = 6.790$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above)	•	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.130$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above)	•	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.130$ Point Load : $D = 0.590$, $L = 0.130$ Point Load : $D = 2.660$, $L = 6.790$ Point Load : $D = 1.680$, $L = 2.460$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above)	•	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0130$ Point Load : $D = 0.590$, $L = 0.0130$ Point Load : $D = 2.660$, $L = 6.790$ Point Load : $D = 1.680$, $L = 2.460$ Load for Span Number 2	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam)	Tributary Width = 15.0 ft,	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0130$ Point Load : $D = 0.590$, $L = 0.0130$ Point Load : $D = 2.660$, $L = 6.790$ Point Load : $D = 1.680$, $L = 2.460$ Load for Span Number 2	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above)	Tributary Width = 15.0 ft,	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.130$ Point Load : $D = 0.590$, $L = 0.130$ Point Load : $D = 2.660$, $L = 6.790$ Point Load : $D = 1.680$, $L = 2.460$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L = 0.0000$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam)	Tributary Width = 15.0 ft,	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.000$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L = 0.0220$, $L = 0.0220$, $L = 0.0220$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam)	Tributary Width = 15.0 ft, ft, (Deck)	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.000$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L = 0.0220$, $L = 0.0220$, $L = 0.0220$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck)	
Uniform Load : $D = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0120$, $L = 0.0130$ Point Load : $D = 0.000$, $L = 0.0130$ Point Load : $D = 2.660$, $L = 6.790$ Point Load : $D = 1.680$, $L = 2.460$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L = 0.0000$ Load for Span Number 3 Uniform Load : $D = 0.00000$, $L = 0.00000$	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck)	
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio =	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 50 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio =	(Deck) <u>Design OK</u> 0.193 : 1
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 50 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = jection used for this span	(Deck) <u>Design OK</u> 0.193 : 1 HSS9x5x3/8
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = rection used for this span Va : Applied	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 5.50 0.060 ksf, Tributary Width = 5.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = lection used for this span Va : Applied Vn/Omega : Allowable	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied	0.040 ksf, Extent = 0.0>> 9.0 ft, 80 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 80 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = fection used for this span Va : Applied Vn/Omega : Allowable bad Combination bcation of maximum on span	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k +D+L 14.500 ft
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable	0.040 ksf, Extent = 0.0>> 9.0 ft, 80 k @ 8.670 ft, (Post Above) 90 k @ 10.50 ft, (Post Above) 80 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Width = 6.50	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = jection used for this span Va : Applied Vn/Omega : Allowable pad Combination	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k +D+L 14.500 ft
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 50 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Widt	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = ft, (Deck) n Shear S	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k +D+L 14.500 ft
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 50 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Widt	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) ft, (Deck) n Shear Stress Ratio = fection used for this span Va : Applied Vn/Omega : Allowable bad Combination boation of maximum on span pan # where maximum occurs 0. Span: 3 : L Only	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k +D+L 14.500 ft
Uniform Load : $D = 0.0120$, $L =$ Point Load : $D = 0.590$, $L = 0.13$ Point Load : $D = 2.660$, $L = 6.79$ Point Load : $D = 1.680$, $L = 2.46$ Load for Span Number 2 Uniform Load : $D = 0.0220$, $L =$ Load for Span Number 3 Uniform Load : $D = 0.0220$, $L =$ SIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Ma : Applied Mn / Omega : Allowable Load Combination Span # where maximum occurs Maximum Deflection	0.040 ksf, Extent = 0.0>> 9.0 ft, 30 k @ 8.670 ft, (Post Above) 50 k @ 10.50 ft, (Post Above) 50 k @ 8.670 ft, (Flush Beam) 0.060 ksf, Tributary Width = 6.50 0.060 ksf, Tributary Widt	Tributary Width = 15.0 ft, ft, (Deck) ft, (Deck) n Shear Stress Ratio = lection used for this span Va : Applied Vn/Omega : Allowable bad Combination bocation of maximum on span pan # where maximum occurs 0. Span: 3 : L Only 0. Span: 3 : L Only	(Deck) Design OK 0.193 : 1 HSS9x5x3/8 17.661 k 91.744 k +D+L 14.500 ft

Load Combination		Max Stres	s Ratios		Sur	nmary of Mo	ment Value	S	Summar	y of Shear	Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb Rm	Va Max	VnxVnx/	Omega
D Only											
Dsgn. L = 14.50	ft 1	0.249	0.062	10.50	-14.70	14.70	98.52	58.99 1.00 1.00	5.67	153.21	91.74
Dsgn. L = 3.00 f	t 2	0.249	0.040	-0.00	-14.70	14.70	98.52	58.99 1.00 1.00	3.63	153.21	91.74
Dsgn. L = 7.25 f	t 3	0.078	0.014		-4.61	4.61	98.52	58.99 1.00 1.00	1.27	153.21	91.74

Steel Beam

LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Main Floor B7 - Deck Beam, Grid C

Maximum Forces & Stresses for Load Combinations

Load Combina	ation		Max Stres	s Ratios		Summary of Moment Values						y of Shear	Values
Segment	Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb	Rm	Va Max	VnxVnx/	Omega
+D+L													
Dsgn. L =	14.50 ft	1	0.767	0.193	30.78	-45.26	45.26	98.52	58.99 1.00	1.00	17.66	153.21	91.74
Dsgn. L =	3.00 ft	2	0.767	0.120	-0.00	-45.26	45.26	98.52	58.99 1.00	1.00	10.98	153.21	91.74
Dsgn. L =	7.25 ft	3	0.252	0.045		-14.86	14.86	98.52	58.99 1.00	1.00	4.10	153.21	91.74
+D+0.750L													
Dsgn. L =	14.50 ft	1	0.638	0.160	25.71	-37.62	37.62	98.52	58.99 1.00	1.00	14.66	153.21	91.74
Dsgn. L =	3.00 ft	2	0.638	0.100	-0.00	-37.62	37.62	98.52	58.99 1.00	1.00	9.14	153.21	91.74
Dsgn. L =	7.25 ft	3	0.209	0.037		-12.30	12.30	98.52	58.99 1.00	1.00	3.39	153.21	91.74
+0.60D													
Dsgn. L =	14.50 ft	1	0.150	0.037	6.30	-8.82	8.82	98.52	58.99 1.00	1.00	3.40	153.21	91.74
Dsgn. L =	3.00 ft	2	0.150	0.024	-0.00	-8.82	8.82	98.52	58.99 1.00	1.00	2.18	153.21	91.74
Dsgn. L =	7.25 ft	3	0.047	0.008		-2.77	2.77	98.52	58.99 1.00	1.00	0.76	153.21	91.74

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl L	ocation in S	pan Lo	ad Combination	Max. "+" Defl	Location in Span
+D+L	1	0.3697	7.05	7		0.0000	0.000
	2	0.0000	7.05	57 +	D+L	-0.0219	1.380
+D+L	3	0.2974	7.25	0		0.0000	1.380
Vertical Reactions			S	upport nota	ition : Far left is # [.]	Values in KIPS	
Load Combination		Support 1	Support 2	Support 3	Support 4		
Max Upward from all Load Co	nditions	7.073	28.643				
Max Upward from Load Comb	oinations	7.073	28.643				
Max Upward from Load Cases	S	4.938	19.342				
Max Downward from all Load	Conditions	s (Resi		-5.184			
Max Downward from Load Co	mbinations	s (Res		-5.184			
Max Downward from Load Ca	ses (Resis	ting U		-3.357			
D Only		2.135	9.301	-1.827			
+D+L		7.073	28.643	-5.184			
+D+0.750L		5.838	23.807	-4.345			
+0.60D		1.281	5.580	-1.096			
L Only		4.938	19.342	-3.357			

Steel Column								ng Kao.ec6
LIC# : KW-06016450, Build:20.23		QUANTUM CONSU arage Column	JLTING	ENGINEERS		(c)	ENERCALC	INC 1983-202
Code References								
Calculations per AISC 360)-16, IBC 2018, CBC 2	2019, ASCE 7-16						
Load Combinations Used	: ASCE 7-16							
General Information								
Steel Section Name : H	ISS4x4x1/4		Ove	all Column Height		8.0 1	ťt	
5	Ilowable Strength			& Bottom Fixity	Top & Bo	ottom Pinned	ł	
Steel Stress Grade Fy : Steel Yield	46.0 ksi			e condition :				
E : Elastic Bending Modulus				nbraced Length for bu nbraced Length for bu	-			
Applied Loads				Service loads enter	ed. Load F	actors will be	e applied fo	r calculation
Column self weight inclu AXIAL LOADS Steel Beam: Axial Lo	uded : 97.680 lbs * De		60 k					
DESIGN SUMMARY								
Bending & Shear Check								
PASS Max. Axial+Bendin Load Combinatio		0.5779 +D+0.750L+0.750S	: 1	Maximum Loa		ns	Ŀ	
Location of max.		+D+0.750L+0.7505 0.0	ft	Top along Bottom alo			k k	
	ation values are	0.0		Top along	0		k	
Pa : Axial		41.018		Bottom ald	ong Y-Y		k	
-	a : Allowable	70.980		Maximum Loa	d Deflectio	ons		
Ma-x : Appl			k-ft	Along Y-Y		in at	ft	above bas
	ega : Allowable	10.765	к-п k-ft	for load comb	ination :			
Ma-y : Appl Mn-y / Ome	ega : Allowable	10.765		Along X-X for load comb	ination :	in at	ft	above bas
PASS Maximum Shea	r Stress Ratio	0.0	: 1					
Load Combination		0.0						
Location of max.	above base ation values are	0.0	ft					
Va : Applie	ed	0.0						
Vn / Omeg	a : Allowable	0.0	k					
oad Combination Res	ults							
Load Combination	Maximum Axial + Bendin Stress Ratio Status		Cbx	Cby KxLx/Ry I	KyLy/Rx		<u>um Shear R</u> tio Status	
Maximum Reactions					Note	e: Only non-z	zero reactio	ns are listed
	Axial Reactio	n X-X Axis Reactio	n k	Y-Y Axis Reaction		d Moments		
Load Combination	@ Base	@ Base @ To	p	@ Base @ Top	@ Bas	е @ Тор	@ Ba	se @ Top
Extreme Reactions								
Item Extr	Axial Reaction reme Value @ Base	n X-X Axis Reactio @ Base @ To		Y-Y Axis Reaction @ Base @ Top	Mx - En @ Bas	d Moments se @ Top		End Moment se @ Top
Maximum Deflections f	or Load Combinat	ions						
Load Combination	Max. Deflection in	X dir Distance	N	ax. Deflection in Y di	r Distan	ce		
Steel Section Propertie	es : HSS4x4x1/4							
Steel Section Propertie	s : HSS4x4x1/4							

Steel Column							Proje	ect File: Hong Kao.ec6
LIC# : KW-06016450, Bu	uild:20.2	23.05.25	QUA	NTUM CON	SULTING ENGINEERS		(c)	ENERCALC INC 1983-202
DESCRIPTION:	Mair	n Floor P6 - Stee	el Garage (Column				
Depth	=	4.000 in	l xx	=	7.80 in^4	J	=	12.800 in^4
Design Thick	=	0.233 in	S xx	=	3.90 in^3			
Width	=	4.000 in	R xx	=	1.520 in			
Wall Thick	=	0.250 in	Zx	=	4.690 in^3			
Area	=	3.370 in^2	l yy	=	7.800 in^4	С	=	6.560 in^3
Weight	=	12.210 plf	S yy	=	3.900 in^3			
-			R yy	=	1.520 in			

Ycg = 0.000 in

Sketches

Steel Column				Proj	ect File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25	QUANTUM CONSU		ENGINEERS	(c)	ENERCALC INC 1983-2023
DESCRIPTION: Main Floor P7 - Steel Liv	/ing Room Colum	าท			
Code References					
Calculations per AISC 360-16, IBC 2018, CBC	2019, ASCE 7-16				
Load Combinations Used : ASCE 7-16					
General Information					
Steel Section Name : HSS4x4x1/4		Over	all Column Height	15.0	ft
Analysis Method : Allowable Strength			•	op & Bottom Pinned	ł
Steel Stress Grade Fy : Steel Yield 46.0 ksi			e condition :		
E : Elastic Bending Modulus 29,000.0 ksi			hbraced Length for buck	-	
		Ur	hbraced Length for buck	IING ABOUT Y-Y AX	IS = 15.0 ft, K = 1.0
Applied Loads			Service loads entered.	Load Factors will b	e applied for calculations
Column self weight included : 183.150 lbs * E	ead Load Factor				
AXIAL LOADS					
Roof Beam: Axial Load at 15.0 ft, D = 5.20 Floor Beam: Axial Load at 15.0 ft, D = 2.5					
DESIGN SUMMARY	50, E = 11000 K				
Bending & Shear Check Results					
PASS Max. Axial+Bending Stress Ratio =	0.4566	: 1	Maximum Load R		
Load Combination	+D+0.750L+0.750S		Top along X->		k
Location of max.above base At maximum location values are	0.0	ft	Bottom along		k
Pa : Axial	16.493	k	Top along Y-Y		k
Pn / Omega : Allowable	36.120		Bottom along	1-1	k
Ma-x : Applied		k-ft	Maximum Load D	eflections	
Mn-x / Omega : Allowable	10.765		Along Y-Y	in at	ft above base
Ma-y : Applied		k-ft	for load combinat	tion :	
Mn-y / Omega : Allowable	10.765		Along X-X	in at	ft above base
inity, enlega , alenable	10.100	it it	for load combinat	tion :	
PASS Maximum Shear Stress Ration	0.0	: 1			
Load Combination	0.0				
Location of max.above base	0.0	ft			
At maximum location values are Va : Applied	0.0	k			
Vn / Omega : Allowable	0.0				
Load Combination Results					
Maximum Axial + Bendir	a Stross Patios			Maxim	um Shear Ratios
Load Combination Stress Ratio Statu	•	Cbx	Cby KxLx/Ry KyL	(D	tio Status Location
Maximum Reactions				Note: Only non-	zero reactions are listed.
Axial Reactic	on X-X Axis Reactio	n k	Y-Y Axis Reaction		k-ft My - End Moments
Load Combination @ Base	@ Base @ To		@ Base @ Top	@ Base @ Top	
Extreme Reactions					
Axial Reactio Item Extreme Value @ Base	n X-X Axis Reactio @ Base @ To		Y-Y Axis Reaction M @ Base @ Top	Mx - End Moments @ Base @ Top	k-ft My - End Moments @ Base @ Top
		٢			
Maximum Deflections for Load Combinat Load Combination Max. Deflection in		κ.4	ax. Deflection in Y dir	Distance	
	n X dir Distance	IVI		Distance	
Steel Section Properties : HSS4x4x1/4					
Steel Section Properties : HSS4x4x1/4					

Steel Column							Proje	ect File: Hong Kao.ec6
LIC# : KW-06016450, Bu	uild:20.2	23.05.25	QUA	NTUM CON	ISULTING ENGINEERS		(c)	ENERCALC INC 1983-202
DESCRIPTION:	Mair	n Floor P7 - Stee	el Living Ro	oom Colu	ımn			
Depth	=	4.000 in	l xx	=	7.80 in^4	J	=	12.800 in^4
Design Thick	=	0.233 in	S xx	=	3.90 in^3			
Width	=	4.000 in	R xx	=	1.520 in			
Wall Thick	=	0.250 in	Zx	=	4.690 in^3			
Area	=	3.370 in^2	l yy	=	7.800 in^4	С	=	6.560 in^3
Weight	=	12.210 plf	S yy	=	3.900 in^3			
			R yy	=	1.520 in			

Ycg = 0.000 in

Sketches

Steel Column	Project File: Hong Kao.ec6
LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING E	NGINEERS (c) ENERCALC INC 1983-2023
DESCRIPTION: Crawlspace BP4 - Crawlspace Column	
Code References	
Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16	
Load Combinations Used : ASCE 7-16	
General Information	
Steel Section Name : HSS4x4x1/4 Overall	Column Height 12 ft
,	Bottom Fixity Top & Bottom Pinned
	condition :
E : Electic Banding Madulus 20.000 0 kai	raced Length for buckling ABOUT X-X Axis = 12 ft, K = 1.0
E : Elastic Bending Modulus 29,000.0 ksi Unbi	raced Length for buckling ABOUT Y-Y Axis = 12 ft, K = 1.0
Applied Loads s	Service loads entered. Load Factors will be applied for calculations
Column self weight included : 146.520 lbs * Dead Load Factor	
AXIAL LOADS	0001
Flush Wood Beam: Axial Load at 12.0 ft, D = 4.340, L = 1.210, S = 1 Dropped Steel Beam: Axial Load at 12.0 ft, D = 11.170, L = 8.610, S	
	= 4.370 K
DESIGN SUMMARY	
Bending & Shear Check ResultsPASS Max. Axial+Bending Stress Ratio =0.5430 : 1	Maximum Load Reactions
Load Combination +D+0.750L+0.750S	Top along X-X k
Location of max.above base 0.0 ft	Bottom along X-X k
At maximum location values are	Top along Y-Y k
Pa : Axial 27.559 k	Bottom along Y-Y k
Pn / Omega : Allowable 50.754 k	Marine and Daffa attack
Ma-x : Applied 0.0 k-ft	Maximum Load Deflections
Mn-x / Omega : Allowable 10.765 k-ft	Along Y-Y in at ft above base for load combination :
Ma-y: Applied 0.0 k-ft	
Mn-y / Omega : Allowable 10.765 k-ft	Along X-X in at ft above base
	for load combination :
PASS Maximum Shear Stress Ratio 0.0 : 1	
Load Combination 0.0	
Location of max.above base 0.0 ft At maximum location values are	
Va : Applied 0.0 k	
Vn / Omega : Allowable 0.0 k	
Load Combination Results	
Maximum Axial + Bending Stress Ratios	Maximum Shear Ratios
Load Combination Stress Ratio Status Location Cbx	Cby KxLx/Ry KyLy/Rx Stress Ratio Status Location
Maximum Reactions	Note: Only non-zero reactions are listed.
	-Y Axis Reaction Mx - End Moments k-ft My - End Moments
	@ Base @ Top @ Base @ Top @ Base @ Top
Extreme Reactions	
	7-Y Axis Reaction Mx - End Moments k-ft My - End Moments @ Base @ Top @ Base @ Top @ Base @ Top
Maximum Deflections for Load Combinations Load Combination Max. Deflection in X dir Distance Max	. Deflection in Y dir Distance
Steel Section Properties : HSS4x4x1/4	
Steel Section Properties : HSS4x4x1/4	

Project Title: Engineer: Project ID: Project Descr:

Steel Column			Project File: Hong Kao.ec6						
LIC# : KW-06016450, Bu	uild:20.2	23.05.25	QUA	NTUM CON	SULTING ENGINEERS		(c)	ENERCALC INC 1983-202	
DESCRIPTION: Crawlspace BP4 - Crawlspace Column									
Depth	=	4.000 in	l xx	=	7.80 in^4	J	=	12.800 in^4	
Design Thick	=	0.233 in	S xx	=	3.90 in^3				
Width	=	4.000 in	R xx	=	1.520 in				
Wall Thick	=	0.250 in	Zx	=	4.690 in^3				
Area	=	3.370 in^2	l yy	=	7.800 in^4	С	=	6.560 in^3	
Weight	=	12.210 plf	S yy	=	3.900 in^3				
-			R yy	=	1.520 in				

Ycg = 0.000 in

Sketches

QCE			
MKS	-	Jun 07, 2023	
		Living Room Roof Framing.r3d	

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	0	0	
2	N2	0	11.25	0	
3	N3	0	27	0	
4	N4	0	27	5.5	
5	N5	0	27	-11.5	
6	N6	-2.75	27	5.5	
7	N7	-2.75	27	-11.5	
8	N8	11.25	27	5.5	
9	N9	11.25	27	-11.5	
10	N11	31	27	-11.5	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]
1	N11	Reaction	Reaction	Reaction	
2	N9	Reaction	Reaction	Reaction	Reaction
3	N8	Reaction	Reaction	Reaction	Reaction
4	N1	Reaction	Reaction	Reaction	
5	N2	Reaction		Reaction	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft ³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Wood Properties

	Label	Туре	Database	Species	Grade Cn	n Ci	Emo	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]
1	DF	Solid Sawn	Visually Graded	Douglas Fir-Larch	No.1		1	0.3	0.3	0.035
2	SP	Solid Sawn	Visually Graded	Southern Pine	No.1		1	0.3	0.3	0.035
3	HF	Solid Sawn	Visually Graded	Hem-Fir	No.1		1	0.3	0.3	0.035
4	SPF	Solid Sawn	Visually Graded	Spruce-Pine-fir	No.1		1	0.3	0.3	0.035
5	24F-1.8E DF Balanced	Glulam	NDS Table 5A	24F-1.8E_DF_BAL	na		1	0.3	0.3	0.035
6	24F-1.8E DF Unbalanced	Glulam	NDS Table 5A	24F-1.8E DF UNBAL	na		1	0.3	0.3	0.035
7	24F-1.8E SP Balanced	Glulam	NDS Table 5A	24F-1.8E SP BAL	na		1	0.3	0.3	0.035
8	24F-1.8E SP Unbalanced	Glulam	NDS Table 5A	24F-1.8E SP UNBAL	na		1	0.3	0.3	0.035
9	1.3E-1600F VERSALAM	SCL	Boise Cascade	1.3E-1600F VERSALAM	na		1	0.3	0.3	0.035
10	1.35E LSL SolidStart	SCL	Louisiana Pacific	1.35E LSL SolidStart	na		1	0.3	0.3	0.035
11	1.3E_RIGIDLAM LVL	SCL	Roseburg Forest Products	1.3E_RIGIDLAM LVL	na		1	0.3	0.3	0.035
12	2.0E DF Parallam PSL	SCL	TrusJoist	2.0E DF Parallam PSL	na		1	0.3	0.3	0.035
13	LVL_PRL_1.5E_2250F	Custom	N/A	LVL_PRL_1.5E_2250F	na		1	0.3	0.3	0.035
14	LVL_Microlam_1.9E_2600F	Custom	N/A	LVL_Microllam_1.9E_2600F	na		1	0.3	0.3	0.035
15	PSL_Parallam_2.0E_2900F	Custom	N/A	PSL_Parallam_2.0E_2900F	na		1	0.3	0.3	0.035
16	LSL_TimberStrand_1.55E_2325F	Custom	N/A	LSL_TimberStrand_1.55E_2325F	na		1	0.3	0.3	0.035

Custom Wood Properties

Label	Fb	Ft	Fv	Fc	Е	E05	Туре
1 LVL PRL 1.5E 225	50F 2.25	1.5	0.22	1.95	1500	1005	SCL
2 LVL PRL 2.0E 290	00F 2.9	1.9	0.285	2.75	2000	1340	SCL
3 LVL Microllam 1.9E 2	2600F 2.6	1.555	0.285	2.51	1900	1273	SCL
4 PSL Parallam 2.0E 2	900F 2.9	2.025	0.29	2.9	2000	1340	SCL
5 PSL Parallam 1.8	E 2.4	1.755	0.18	2.5	1800	1206	SCL
6 LSL TimberStrand 1.55E	2325F 2.325	1.07	0.31	2.05	1550	1038.5	SCL
7 LSL_TimberStrand_1.3E	_1700F 1.7	1.075	0.4	1.4	1300	871	SCL

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N11	N7		5.125X21FS	Beam	Glulam Western	24F-1.8E DF Balanced	Typical
2	M2	N8	N6		5.125X21FS	Beam	Glulam Western	24F-1.8E DF Balanced	Typical
3	M3	N4	N5		W10X33	Beam	Wide Flange	A992	Typical
4	M4	N1	N3	90	W16X67	Column	Wide Flange	A992	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length [ft]	Lcomp top [ft]	Channel Conn.	a [ft]	Function
1	M3	W10X33	17	Lbyy	N/A	N/A	Lateral
2	M4	W16X67	27	Lbyy	N/A	N/A	Lateral

Wood Design Parameters

	Label	Shape	Length [ft]	le2 [ft]	le-bend top [ft]	Cr	y sway	z sway
1	M1	5.125X21FS	33.75	2	Lbyy			
2	M2	5.125X21FS	14	2	Lbyy			

Design Size and	I Code Check Parameters
-----------------	-------------------------

Label	Max Axial/Bending Chk	Max Shear Chk
1 Typical	1	1

Deflection Design

Label	LC	Ratio	LC	Ratio	LC	Ratio
1 Typical	1	240	2	360	3	240

Node Loads and En	Node Loads and Enforced Displacements (BLC 2 : Deck Dead Load)									
Node Label L, D, M Direction Magnitude [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]										
1 N2	L	Y	-1.5							

Node Loads and Enforced Displacements (BLC 4 : Live Load)

	Node Label	L, D, M	Direction	Magnitude [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	N2	L	Y	-4

Node Loads and Enforced Displacements (BLC 5 : Earthquake)

	Node Label	L, D, M	Direction	Magnitude [(k, k-ft), (in, rad), (k*s²/ft, k*s²*ft)]
1	N3	L	Z	2.91

Member Distributed Loads (BLC 1 : Roof Dead Load)

	Member LabelDirectionStart Magnitude [k/ft, F, ksf, k-ft/ft]End Magnitude [k/ft, F, ksf, k-ft/ft]Start Location [(ft, %)]End Location [(ft, %)]									
1	M2	Y	-0.18	-0.18	0	%100				
2	M1	Y	-0.18	-0.18	0	%100				

Member Distributed Loads (BLC 3 : Snow Load)

I	Member Labe	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	M1	Y	-0.27	-0.27	0	%100

Basic Load Cases

	BLC Description	Category	Y Gravity	Z Gravity	Nodal	Distributed
1	Roof Dead Load	DL	-1			2
2	Deck Dead Load	DL			1	
3	Snow Load	SL				1
4	Live Load	LL			1	
5	Earthquake	EL		0.78	1	

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	Live Only	Yes	Y	LL	1								
2	Snow Only	Yes	Y	SL	1								
3	+ EQ Only	Yes	Y	EL	1								
4	- EQ Only	Yes	Y	EL	-1								
5	IBC 16-8 D Only	Yes	Y	DL	1								
6	IBC 16-9 D + L	Yes	Y	DL	1	LL	1						
7	IBC 16-10 D +S	Yes	Y	DL	1	SL	1						
8	IBC 16-11 D+0.75L+0.75S	Yes	Y	DL	1	LL	0.75	SL	0.75				
9	IBC 16-12 D+0.7E	Yes	Y	DL	1	Sds*DL	0.14	EL	0.7				
10		Yes	Y	DL	1	Sds*DL	0.14	EL	-0.7				
11	IBC 16-14 D+0.525E+0.75L+0.75S	Yes	Y	DL	1	Sds*DL	0.105	EL	0.525	LL	0.75	SL	0.75
12		Yes	Y	DL	1	Sds*DL	0.105	EL	-0.525	LL	0.75	SL	0.75
13	IBC 16-16 0.6D+0.7E	Yes	Y	DL	0.6	Sds*DL	-0.14	EL	0.7				
14		Yes	Y	DL	0.6	Sds*DL	-0.14	EL	-0.7				
15	IBC 16-5 (LRFD)		Y	DL	1.2	Sds*DL	0.2	EL	1	LL	0.5	SL	0.7

Node Reactions

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N11	0	-0.001	0	0	0	0
2	1	N9	0	0.002	0	0	0	0
3	1	N8	0	0	0	0	0	0
4	1	N1	0	3.998	0.002	0	0	0
5	1	N2	0	0	-0.002	0	0	0
6	1	Totals:	0	4	0			
7	1	COG (ft):	X: 0	Y: 11.25	Z: 0			
8	2	N11	0	1.692	-0.01	0	0	0
9	2	N9	0	6.779	0.027	0	0	0

Node Reactions (Continued)

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
10	2	N8	0	0	0	0	0	0
11	2	N1	0	0.642	-0.632	0	0	0
12	2	N2	-0.001	0	0.615	0	0	0
13	2	Totals:	0	9.113	0			
14	2	COG (ft):	X: 14.125	Y: 27	Z: -11.5			
15	3	N11	0	0.489	-0.111	0	0	0
16	3	N9	0	-1.348	-0.559	0	0	0
17	3	N8	0	0.001	-0.108	0	0	0
18	3	N1	0	0.858	4.371	0	0	0
19	3	N2	0	0	-9.32	0	0	0
20	3	Totals:	0	0	-5.727			
21	3	COG (ft):	NC	NC	NC			
22	4	N11	0	-0.488	0.111	0	0	0
23	4	N9	0	1.344	0.558	0	0	0
24	4	N8	0	-0.001	0.108	0	0	0
25	4	N1	0	-0.856	-4.362	0	0	0
26	4	N2	0	0	9.312	0	0	0
27	4	Totals:	0	0	5.727			
28	4	COG (ft):	NC	NC	NC			
29	5	N11	0	1.374	0.001	0	0	0
30	5	N9	0	4.951	-0.003	0	0	0
31	5	N8	0	1.091	0	0	0	0
32	5	N1	0	6.291	0.078	0	0	0
33	5	N2	-0.001	0	-0.076	0	0	0
34	5	Totals:	0	13.707	0			
35	5	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			
36	6	N11	0	1.373	0.001	0	0	0
37	6	N9	0	4.953	-0.003	0	0	0
38	6	N8	0	1.091	0	0	0	0
39	6	N1	0	10.29	0.08	0	0	0
40	6	N2	-0.001	0	-0.078	0	0	0
41	6	Totals:	0	17.707	0			
42	6	COG (ft):	X: 6.243	Y: 20.735	Z: -3.718			
43	7	N11	0	3.066	-0.009	0	0	0
44	7	N9	0	11.73	0.024	0	0	0
45	7	N8	0.001	1.09	0	0	0	0
46	7	N1	0	6.933	-0.557	0	0	0
47	7	N2	-0.001	0	0.542	0	0	0
48	7	Totals:	0	22.819	0			
49	7	COG (ft):	X: 10.485	Y: 24.899	Z: -7.477			
50	8	N11	0	2.642	-0.006	0	0	0
51	8	N9	0	10.037	0.017	0	0	0
52	8	N8	0.001	1.09	0	0	0	0
53	8	N1	0	9.771	-0.397	0	0	0
54	8	N2	-0.001	0	0.386	0	0	0
55	8	Totals:	0	23.541	0			
56	8	COG (ft):	X: 8.797	Y: 22.957	Z: -6.135			
57	9	N11	0	1.904	-0.076	0	0	0
58	9	N9	0	4.676	-0.395	0	0	0
59	9	N8	0.001	1.239	-0.076	0	0	0
60	9	N1	0	7.749	3.163	0	0	0
61	9	N2	-0.001	0	-6.625	0	0	0
62	9	Totals:	0	15.568	-4.009			
63	9	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			
64	10	N11	0	1.217	0.079	0	0	0
			~		0.010	, <u> </u>	, <u> </u>	ÿ

Node Reactions (Continued)

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
65	10	N9	0	6.569	0.387	0	0	0
66	10	N8	0	1.238	0.076	0	0	0
67	10	N1	0	6.544	-2.98	0	0	0
68	10	N2	-0.001	0	6.447	0	0	0
69	10	Totals:	0	15.568	4.009			
70	10	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			
71	11	N11	0	3.04			0	0
72	11	N9	0	9.831	-0.277	0	0	0
73	11	N8	0.001	1.202			0	0
74	11	N1	0	10.864			0	0
75	11	N2	-0.001	0	-4.525	0	0	0
76	11	Totals:	0	24.937	-3.007			
77	11	COG (ft):	X: 8.756	Y: 22.987	Z: -6.06			
78	12	N11	0	2.525	0.052	0	0	0
79	12	N9	0	11.251	0.31	0	0	0
80	12	N8	0.001	1.201	0.057	0	0	0
81	12	N1	0	9.96	-2.692	0	0	0
82	12	N2	-0.001	0	5.28	0	0	0
83	12	Totals:	0	24.937	3.007			
84	12	COG (ft):	X: 8.756	Y: 22.987	Z: -6.06			
85	13	N11	0	0.98	-0.077	0	0	0
86	13	N9	0	1.353	-0.393	0	0	0
87	13	N8	0	0.507	-0.076	0	0	0
88	13	N1	0	3.522	3.101	0	0	0
89	13	N2	-0.001	0	-6.564	0	0	0
90	13	Totals:	0	6.363	-4.009			
91	13	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			
92	14	N11	0	0.296	0.078	0	0	0
93	14	N9	0	3.241	0.389	0	0	0
94	14	N8	0	0.505	0.076	0	0	0
95	14	N1	0	2.32	-3.024	0	0	0
96	14	N2	0	0	6.49	0	0	0
97	14	Totals:	0	6.363	4.009			
98	14	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			

Node Displacements

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
1	1	N1	0	0	0	-1.908e-7	0	0
2	1	N2	0	-0.001	0	4.535e-7	0	0
3	1	N3	0	-0.001	0	2.292e-6	0	3.1e-8
4	1	N4	0	-0.001	0	0	1.913e-6	9.901e-6
5	1	N5	0	-0.001	0	0	2.259e-6	4.434e-6
6	1	N6	0	-0.002	0	0	1.913e-6	9.901e-6
7	1	N7	0	-0.001	0	0	2.259e-6	4.434e-6
8	1	N8	0	0	0	0	1.913e-6	9.91e-6
9	1	N9	0	0	0	0	1.218e-6	2.399e-6
10	1	N11	0	0	0	0	-6.086e-7	-1.178e-6
11	2	N1	0	0	0	7.708e-5	5.587e-7	9.213e-8
12	2	N2	0	0	0	-1.832e-4	5.587e-7	-1.859e-7
13	2	N3	0	0	-0.104	-9.255e-4	5.587e-7	1.9e-6
14	2	N4	0	0.061	-0.104	0	-7.726e-4	-4.487e-4
15	2	N5	0	-0.273	-0.104	0	-9.123e-4	2.479e-3
16	2	N6	0	0.075	-0.13	0	-7.726e-4	-4.487e-4
17	2	N7	0	-0.355	-0.134	0	-9.123e-4	2.498e-3
18	2	N8	0	0	0	0	-7.726e-4	-4.492e-4

Node Displacements (Continued)

			V [in]	V [in]	7 [in]	V Detetion [red]	V Detetion [red]	7 Detetion [red]
40	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
19	2	N9	0	0	0	0	-4.92e-4 2.458e-4	8.234e-4
20	2	N11 N1	0	0	0	-5.486e-4		4.878e-4
	3	N1 N2	-	0	0		3.966e-7	6.545e-8
22	3	N3	0	-0.001	0.559	1.331e-3 3.403e-3	3.966e-7 3.966e-7	-1.321e-7 1.349e-6
23	3	N4	0	-0.225	0.559		3.793e-3	1.666e-3
25	3	N4 N5	0	0.225	0.559	0	5.07e-3	-2.39e-3
26	3	N6	0	-0.28	0.685	0	3.82e-3	1.666e-3
20	3	N7	0	0.354	0.005	0	5.097e-3	-2.39e-3
28	3	N8	0	0.334	0.727	0	4.552e-3	1.668e-3
29	3	N9	0	0	0	0	1.991e-3	-1.293e-3
30	3	N11	0	0	0	0	2.578e-4	6.35e-4
31	4	N1	0	0	0	5.475e-4	-3.964e-7	-6.552e-8
32	4	N2	0	0	0	-1.329e-3	-3.964e-7	1.322e-7
33	4	N3	0	0.001	-0.558	-3.396e-3	-3.964e-7	-1.349e-6
34	4	N4	0	0.225	-0.558	0	-3.785e-3	-1.664e-3
35	4	N5	0	-0.275	-0.558	0	-5.06e-3	2.385e-3
36	4	N6	0	0.275	-0.684	0	-3.812e-3	-1.664e-3
37	4	N7	0	-0.353	-0.726	0	-5.087e-3	2.385e-3
38	4	N8	0	-0.355	0.720	0	-4.544e-3	-1.665e-3
39	4	N9	0	0	0	0	-1.986e-3	1.29e-3
40	4	N11	0	0	0	0	-2.603e-4	-6.335e-4
41	5	N1	0	0	0	-9.553e-6	7.401e-7	1.213e-7
42	5	N2	0	-0.002	0	2.27e-5	7.401e-7	-2.447e-7
43	5	N3	0	-0.003	0.013	1.144e-4	7.401e-7	2.51e-6
44	5	N4	0	-0.06	0.013	0	9.563e-5	2.582e-4
45	5	N5	0	-0.163	0.013	0	1.129e-4	1.494e-3
46	5	N6	0	-0.069	0.016	0	9.563e-5	2.727e-4
47	5	N7	0	-0.212	0.017	0	1.129e-4	1.508e-3
48	5	N8	0	0	0	0	9.563e-5	6.646e-4
49	5	N9	0	0	0	0	6.09e-5	4.129e-4
50	5	N11	0	0	0	0	-3.042e-5	4.785e-4
51	6	N1	0	0	0	-9.745e-6	7.492e-7	1.228e-7
52	6	N2	0	-0.003	0	2.316e-5	7.492e-7	-2.478e-7
53	6	N3	0	-0.004	0.013	1.167e-4	7.492e-7	2.541e-6
54	6	N4	0	-0.061	0.013	0	9.755e-5	2.682e-4
55	6	N5	0	-0.163	0.013	0	1.152e-4	1.498e-3
56	6	N6	0	-0.071	0.016	0	9.755e-5	2.826e-4
57	6	N7	0	-0.213	0.017	0	1.152e-4	1.512e-3
58	6	N8	0	0	0	0	9.755e-5	6.745e-4
59	6	N9	0	0	0	0	6.213e-5	4.153e-4
60	6	N11	0	0	0	0	-3.103e-5	4.773e-4
61	7	N1	0	0	0	6.796e-5	1.301e-6	2.129e-7
62	7	N2	0	-0.002	0	-1.615e-4	1.301e-6	-4.297e-7
63	7	N3	0	-0.004	-0.092	-8.137e-4	1.301e-6	4.412e-6
64	7	N4	0	0.001	-0.092	0	-6.801e-4	-1.918e-4
65	7	N5	0	-0.436	-0.092	0	-8.031e-4	3.974e-3
66	7	N6	0	0.006	-0.114	0	-6.801e-4	-1.773e-4
67	7	N7	0	-0.568	-0.118	0	-8.031e-4	4.008e-3
68	7	N8	0	0	0	0	-6.801e-4	2.141e-4
69	7	N9	0	0	0	0	-4.332e-4	1.237e-3
70	7	N11	0	0	0	0	2.164e-4	9.658e-4
71	8	N1	0	0	0	4.842e-5	1.168e-6	1.912e-7
72	8	N2	0	-0.003	0	-1.151e-4	1.168e-6	-3.858e-7
73	8	N3	0	-0.004	-0.065	-5.799e-4	1.168e-6	3.96e-6

Node Displacements (Continued)

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
74	8	N4	0	-0.016	-0.065	0	-4.846e-4	-7.18e-5
75	8	N5	0	-0.368	-0.065	0	-5.723e-4	3.357e-3
76	8	N6	0	-0.014	-0.081	0	-4.846e-4	-5.734e-5
77	8	N7	0	-0.48	-0.084	0	-5.723e-4	3.386e-3
78	8	N8	0	0	0	0	-4.846e-4	3.342e-4
79	8	N9	0	0	0	0	-3.086e-4	1.033e-3
80	8	N11	0	0	0	0	1.542e-4	8.431e-4
81	9	N1	0	0	0	-3.966e-4	1.122e-6	1.835e-7
82	9	N2	0	-0.002	0	9.618e-4	1.122e-6	-3.703e-7
83	9	N3	0	-0.004	0.408	2.522e-3	1.122e-6	3.802e-6
84	9	N4	0	-0.227	0.408	0	2.776e-3	1.465e-3
85	9	N5	0	0.009	0.408	0	3.692e-3	1.614e-5
86	9	N6	0	-0.276	0.5	0	2.795e-3	1.481e-3
87	9	N7	0	0.008	0.53	0	3.711e-3	3.255e-5
88	9	N8	0	0	0	0	3.308e-3	1.928e-3
89	9	N9	0	0	0	0	1.471e-3	-4.401e-4
90	9	N11	0	0	0	0	1.418e-4	9.898e-4
91	10	N1	0	0	0	3.743e-4	5.606e-7	9.181e-8
92	10	N2	0	-0.002	0	-9.089e-4	5.606e-7	-1.853e-7
93	10	N3	0	-0.002	-0.378	-2.259e-3	5.606e-7	1.901e-6
93	10	N4	0	0.003	-0.378	0	-2.555e-3	-8.771e-4
95	10	N4 N5	0	-0.378	-0.378	0	-3.431e-3	3.374e-3
96	10	N6	0	0.118	-0.463	0	-2.574e-3	-8.607e-4
97	10	N7	0	-0.49	-0.492	0	-3.45e-3	3.39e-3
98	10	N8	0	0.49		0	-3.086e-3	-4.167e-4
99	10	N9	0	0	0	0		
100	10	N11	0	0	0	0	<u>-1.33e-3</u> -2.122e-4	<u>1.376e-3</u> 9.787e-5
				0		<u> </u>		
101	11	N1	0	-	0	-2.419e-4	1.455e-6	2.378e-7
102	11	N2	0	-0.003	0	5.892e-4	1.455e-6	-4.799e-7
103	11	N3	0	-0.005	0.231	1.226e-3	1.455e-6	4.929e-6
104		N4	0	-0.14	0.231	0	1.526e-3	8.333e-4
105	11	N5	0	-0.239	0.231	0	2.112e-3	2.249e-3
106	11	N6	0	-0.168	0.282	0	1.54e-3	8.493e-4
107	11	N7	0	-0.315	0.301	0	2.126e-3	2.28e-3
108	11	N8	0	0	0	0	1.924e-3	1.282e-3
109	11	N9	0	0	0	0	7.489e-4	3.934e-4
110	11	N11	0	0	0	0	2.834e-4	1.227e-3
111	12	N1	0	0	0	3.365e-4	1.033e-6	1.69e-7
112	12	N2	0	-0.003	0	-8.142e-4	1.033e-6	-3.411e-7
113	12	N3	0	-0.004	-0.359	-2.361e-3	1.033e-6	3.502e-6
114	12	N4	0	0.097	-0.359	0	-2.474e-3	-9.238e-4
115	12	N5	0	-0.529	-0.359	0	-3.232e-3	4.768e-3
116	12	N6	0	0.127	-0.441	0	-2.488e-3	-9.078e-4
117	12	N7	0	-0.688	-0.466	0	-3.246e-3	4.798e-3
118	12	N8	0	0	0	0	-2.872e-3	-4.772e-4
119	12	N9	0	0	0	0	-1.353e-3	1.756e-3
120	12	N11	0	0	0	0	1.822e-5	5.575e-4
121	13	N1	0	0	0	-3.891e-4	6.216e-7	1.022e-7
122	13	N2	0	-0.001	0	9.439e-4	6.216e-7	-2.063e-7
123	13	N3	0	-0.002	0.398	2.439e-3	6.216e-7	2.112e-6
124	13	N4	0	-0.186	0.398	0	2.704e-3	1.288e-3
125	13	N5	0	0.117	0.398	0	3.607e-3	-9.823e-4
126	13	N6	0	-0.229	0.488	0	2.723e-3	1.295e-3
127	13	N7	0	0.15	0.518	0	3.625e-3	-9.756e-4
128	13	N8	0	0.10	0.010	0	3.235e-3	1.478e-3
120	10		U	0	0	U	J.200 C- J	1.4/05-3

Node Displacements (Continued)

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
129	13	N9	0	0	0	0	1.425e-3	-7.148e-4
130	13	N11	0	0	0	0	1.649e-4	6.672e-4
131	14	N1	0	0	0	3.797e-4	6.404e-8	1.054e-8
132	14	N2	0	-0.001	0	-9.216e-4	6.404e-8	-2.128e-8
133	14	N3	0	-0.001	-0.386	-2.33e-3	6.404e-8	2.176e-7
134	14	N4	0	0.13	-0.386	0	-2.611e-3	-1.047e-3
135	14	N5	0	-0.268	-0.386	0	-3.497e-3	2.366e-3
136	14	N6	0	0.164	-0.472	0	-2.63e-3	-1.041e-3
137	14	N7	0	-0.346	-0.502	0	-3.516e-3	2.373e-3
138	14	N8	0	0	0	0	-3.143e-3	-8.598e-4
139	14	N9	0	0	0	0	-1.366e-3	1.097e-3
140	14	N11	0	0	0	0	-1.943e-4	-2.223e-4

Member Section Forces

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
1	1	M1	1	0	-0.001	0	0	0	0
2			2	0	-0.001	0	0	0	0.008
3			3	0	-0.001	0	0	0	0.015
4			4	0	0.002	0	0	0	0.009
5			5	0	0	0	0	0	0
6	1	M2	1	0	0	0	0	0	0
7			2	0	0	0	0	0	0
8			3	0	0	0	0	0	0
9			4	0	0	0	0	0	0
10			5	0	0	0	0	0	0
11	1	M3	1	0	0	0	0	0	0
12			2	0	0	0	0	0	0
13			3	0	-0.002	0	0	0	-0.014
14			4	0	-0.002	0	0	0	-0.007
15			5	0	-0.002	0	0	0	0
16	1	M4	1	3.998	0.002	0	0	0	0
17			2	3.998	0.002	0	0	0	-0.011
18			3	-0.002	0	0	0	0	-0.018
19			4	-0.002	0	0	0	0	-0.018
20			5	-0.002	0	0	0	0	-0.018
21	2	M1	1	0	1.692	0.01	0	0	0
22			2	0	-0.586	0.01	0	0.084	-4.669
23			3	0	-2.864	0.01	0	0.167	9.884
24			4	0	1.637	-0.017	0	0.099	5.953
25			5	0	0	0	0	0	0
26	2	M2	1	0	0	0	0	0	0
27			2	0	0	0	0	0	0.001
28			3	0	0	0	0	0	0.002
29			4	0	0	0	0	0	0.003
30			5	0	0	0	0	0	0
31	2	M3	1	0	0	0	0.004	0	0
32			2	0	0	0	0.004	0.001	0.001
33			3	0.017	0.642	0	0.01	0.001	5.454
34			4	0.017	0.642	0	0.01	0.001	2.727
35			5	0.017	0.642	0	0.01	0	0
36	2	M4	1	0.642	-0.632	0	0	0	0
37	-		2	0.642	-0.632	0	0	0.001	4.267
38			3	0.642	-0.017	0	0	0	7.15
39			4	0.642	-0.017	0	0	-0.003	7.263
40			5	0.642	-0.017	0	0	-0.006	7.377
			~		0.0		`	0.000	

		Section Forces (
	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
41	3	M1	1	0	0.489	0.111	0	0	0
42			2	0	0.489	-0.061	0	0.211	-4.124
43			3	0	0.489	-0.233	0	-1.031	-8.248
44			4	0	-0.859	0.153	0	-0.618	-4.876
45			5	0	0	0	0	0	0
46	3	M2	1	0	0.001	0.108	0	0	0
47			2	0	0.001	0.037	0	0.253	-0.004
48			3	0	0.001	-0.035	0	0.255	-0.009
49			4	0	0.001	-0.106	0	0.008	-0.013
50			5	0	0	0	0	0	0
51	3	M3	1	-0.178	0.003	0	-0.014	0	0
52	•		2	-0.287	0.003	0	-0.014	0.001	-0.011
53			3	0.238	0.858	0	-0.009	0.001	7.296
54			4	0.129	0.858	0	-0.009	0	3.648
55			5	0.019	0.858	0	-0.009	0	0.040
56	3	M4	1	0.858	4.371	0	0	0	0
57	5	1714	2	0.858	4.722	0	0	0	-30.687
				0.858		0	0	0	
58			3		-4.251		0	-0.002	-42.766
59			4	0.858	-3.9	0			-15.255
60	4		5	0.858	-3.549	-	0	-0.004	9.885
61	4	M1	1	0	-0.488	-0.111	0	0	0
62			2	0	-0.488	0.061	0	-0.212	4.114
63			3	0	-0.488	0.233	0	1.029	8.229
64			4	0	0.857	-0.153	0	0.617	4.864
65			5	0	0	0	0	0	0
66	4	M2	1	0	-0.001	-0.108	0	0	0
67			2	0	-0.001	-0.037	0	-0.253	0.004
68			3	0	-0.001	0.035	0	-0.255	0.008
69			4	0	-0.001	0.106	0	-0.008	0.013
70			5	0	0	0	0	0	0
71	4	M3	1	0.178	0	0	0.014	0	0
72			2	0.287	0	0	0.014	-0.001	-0.001
73			3	-0.238	-0.857	0	0.009	-0.001	-7.288
74			4	-0.129	-0.857	0	0.009	0	-3.644
75			5	-0.019	-0.857	0	0.009	0	0
76	4	M4	1	-0.856	-4.362	0	0	0	0
77			2	-0.856	-4.713	0	0	0	30.628
78			3	-0.856	4.243	0	0	0	42.685
79			4	-0.856	3.892	0	0	0.002	15.227
80			5	-0.856	3.541	0	0	0.002	-9.859
81	5	M1	1	0.000	1.374	-0.001	0	0.004	0
82	0	111	2	0	-0.366	-0.001	0	-0.01	-4.253
83			3	0	-2.105	-0.001	0	-0.021	6.17
84			4	0	1.106	0.001	0	-0.021	3.731
85			5	0	0	0.002	0	0.012	0
	F	MO		-					
86	5	M2	1	0	1.091	0	0	0	0
87			2	0	0.369	0	0	0	-2.554
88			3	0	-0.353	0	0	0	-2.583
89			4	0	-1.074	0	0	0	-0.086
90	_		5	0	0	0	0	0	0
91	5	M3	1	0	-1.796	0	-0.002	0	0
92			2	0	-1.936	0	-0.002	0.002	7.93
93			3	-0.002	0.914	0	0.006	0.002	6.576
94			4	-0.002	0.774	0	0.006	0.001	2.99
95			5	-0.002	0.633	0	0.006	0	0

		Section Forces (01 11	0	T II (1)	NA (51 61)	NA 151 513
	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
96	5	M4	1	6.291	0.078	0	0	0	0
97			2	5.841	0.078	0	0	0.001	-0.529
98			3	3.891	0.002	-0.001	0	0	-0.885
99			4	3.441	0.002	-0.001	0	-0.004	-0.897
100			5	2.991	0.002	-0.001	0	-0.008	-0.909
101	6	M1	1	0	1.373	-0.001	0	0	0
102			2	0	-0.367	-0.001	0	-0.011	-4.246
103			3	0	-2.106	-0.001	0	-0.021	6.185
104			4	0	1.108	0.002	0	-0.012	3.74
105			5	0	0	0	0	0	0
106	6	M2	1	0	1.091	0	0	0	0
107			2	0	0.369	0	0	0	-2.554
108			3	0	-0.353	0	0	0	-2.583
109			4	0	-1.074	0	0	0	-0.086
110			5	0	0	0	0	0	0
111	6	M3	1	0	-1.796	0	-0.002	0	0
112			2	0	-1.936	0	-0.002	0.002	7.93
113			3	-0.002	0.912	0	0.006	0.002	6.562
114			4	-0.002	0.772	0	0.006	0.001	2.983
115			5	-0.002	0.632	0	0.006	0	0
116	6	M4	1	10.29	0.08	0	0.000	0	0
117			2	9.84	0.08	0	0	0.001	-0.539
118			3	3.889	0.002	-0.001	0	0.001	-0.903
119			4	3.439	0.002	-0.001	0	-0.004	-0.915
120			5	2.989	0.002	-0.001	0	-0.004	-0.913
	7	N44					-		
121	7	M1	1	0	3.066	0.009	0	0	0
122			2	0	-0.952	0.009	0	0.074	-8.919
123			3	0	-4.969	0.009	0	0.147	16.06
124			4	0	2.743	-0.015	0	0.087	9.688
125	_		5	0	0	0	0	0	0
126	7	M2	1	-0.001	1.09	0	0	0	0
127			2	-0.001	0.369	0	0	0	-2.553
128			3	-0.001	-0.353	0	0	0	-2.58
129			4	-0.001	-1.074	0	0	0	-0.082
130			5	0	0	0	0	0	0
131	7	M3	1	0	-1.796	0.001	0.002	0	0
132			2	0	-1.936	0.001	0.002	0.003	7.931
133			3	0.015	1.555	0	0.016	0.003	12.024
134			4	0.015	1.415	0	0.016	0.001	5.714
135			5	0.015	1.274	0	0.016	0	0
136	7	M4	1	6.933	-0.557	0	0	0	0
137			2	6.482	-0.557	0	0	0.001	3.762
138			3	4.532	-0.012	-0.001	0	0	6.297
139			4	4.082	-0.012	-0.001	0	-0.007	6.378
140			5	3.632	-0.012	-0.001	0	-0.014	6.46
141	8	M1	1	0	2.642	0.006	0	0	0
142			2	0	-0.806	0.006	0	0.052	-7.747
143			3	0	-4.254	0.006	0	0.105	13.599
144			4	0	2.335	-0.011	0	0.062	8.205
145			5	0	0	0	0	0	0
146	8	M2	1	-0.001	1.09	0	0	0	0
147	<u> </u>	1112	2	-0.001	0.369	0	0	0	-2.553
148			3	-0.001	-0.353	0	0	0	-2.581
149			4	-0.001	-1.074	0	0	0	-0.083
150			5	0.001	0	0	0	0	0.000
130			J	U	0	0	U	0	0

		Section Forces (
	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
151	8	M3	1	0	-1.796	0.001	0.001	0	0
152			2	0	-1.936	0.001	0.001	0.003	7.931
153			3	0.011	1.394	0	0.013	0.003	10.652
154			4	0.011	1.253	0	0.013	0.001	5.028
155			5	0.011	1.113	0	0.013	0	0
156	8	M4	1	9.771	-0.397	0	0	0	0
157			2	9.321	-0.397	0	0	0.001	2.68
158			3	4.371	-0.009	-0.001	0	0	4.487
159			4	3.921	-0.009	-0.001	0	-0.006	4.545
160			5	3.47	-0.009	-0.001	0	-0.013	4.604
161	9	M1	1	0.17	1.904	0.076	0	0	0
162	3		2	0	-0.072	-0.044	0	0.134	-7.73
163			3	0	-2.047	-0.165	0	-0.748	1.21
164			4	0	0.653	0.103	0	-0.448	0.811
			5	0			0		
165		140		-	0	0		0	0
166	9	M2	1	-0.001	1.239	0.076	0	0	0
167			2	-0.001	0.42	0.026	0	0.177	-2.904
168			3	-0.001	-0.4	-0.024	0	0.179	-2.939
169			4	-0.001	-1.219	-0.074	0	0.006	-0.106
170			5	0	0	0	0	0	0
171	9	M3	1	-0.124	-2.038	0.001	-0.012	0	0
172			2	-0.201	-2.197	0.001	-0.012	0.003	8.999
173			3	0.164	1.642	0	0	0.002	12.601
174			4	0.087	1.482	0	0	0.001	5.962
175			5	0.011	1.323	0	0	0	0
176	9	M4	1	7.749	3.163	0	0	0	0
177			2	7.237	3.409	0	0	0.001	-22.178
178			3	5.022	-2.986	-0.001	0	0	-31.074
179			4	4.511	-2.74	-0.001	0	-0.006	-11.747
180			5	4	-2.495	-0.001	0	-0.012	5.92
181	10	M1	1	0	1.217	-0.079	0	0	0
182			2	0	-0.758	0.041	0	-0.158	-1.937
183			3	0	-2.734	0.162	0	0.7	12.796
184			4	0	1.859	-0.105	0	0.42	7.66
185			5	0	0	0	0	0	0
186	10	M2	1	0	1.238	-0.076	0	0	0
187			2	0	0.418	-0.026	0	-0.177	-2.898
188			3	0	-0.401	0.024	0	-0.179	-2.927
189			4	0	-1.221	0.074	0	-0.006	-0.088
190			5	0	0	0	0	0	0
191	10	M3	1	0.124	-2.04	0	0.007	0	0
192	10	1410	2	0.201	-2.199	0	0.007	0.001	9.009
193			3	-0.169	0.435	0	0.013	0.001	2.341
193			4	-0.092	0.275	0	0.013	0.001	0.832
194			5	-0.092	0.275	0	0.013	0.001	0.052
195	10	M4	1	6.544	-2.98	0	0.013	0	0
190	10	1014	2	6.033	-3.226	0	0	0.001	20.946
				3.817				0.001	
198 199			3	3.306	2.986	0	0	-0.003	<u>29.022</u> 9.695
			4		2.74	-			
200	4.4	N/A	5	2.795	2.495	0	0	-0.006	-7.973
201	11	M1	1	0	3.04	0.064	0	0	0
202			2	0	-0.585	-0.026	0	0.161	-10.354
203			3	0	-4.211	-0.116	0	-0.441	9.88
204			4	0	1.995	0.07	0	-0.265	6.016
205			5	0	0	0	0	0	0

		ection Forces (
	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
206	11	M2	1	-0.001	1.202	0.057	0	0	0
207			2	-0.001	0.407	0.019	0	0.133	-2.816
208			3	-0.001	-0.388	-0.018	0	0.134	-2.848
209			4	-0.001	-1.183	-0.056	0	0.004	-0.099
210			5	0	0	0	0	0	0
211	11	M3	1	-0.093	-1.978	0.001	-0.007	0	0
212			2	-0.151	-2.132	0.001	-0.007	0.003	8.734
213			3	0.135	1.94	0	0.009	0.003	15.172
214			4	0.078	1.785	0	0.009	0.002	7.257
215			5	0.070	1.63	0	0.009	0.002	0
216	11	N44							
	11	M4	1	10.864	1.916	0	0	0	0
217			2	10.368	2.101	0	0	0.001	-13.557
218			3	5.219	-2.25	-0.001	0	0	-18.155
219			4	4.723	-2.065	-0.001	0	-0.008	-3.592
220			5	4.227	-1.881	-0.001	0	-0.016	9.726
221	12	M1	1	0	2.525	-0.052	0	0	0
222			2	0	-1.1	0.038	0	-0.058	-6.009
223			3	0	-4.726	0.129	0	0.646	18.57
224			4	0	2.9	-0.091	0	0.386	11.153
225			5	0	0	0	0	0	0
226	12	M2	1	-0.001	1.201	-0.057	0	0	0
227			2	-0.001	0.406	-0.019	0	-0.133	-2.811
228			3	-0.001	-0.389	0.018	0	-0.134	-2.839
229			4	-0.001	-1.184	0.056	0	-0.004	-0.085
230			5	0	0	0.000	0	0	0
230	12	M3	1	0.093	-1.979	0.001	0.008	0	0
232	12	IVIS	2	0.151	-2.134	0.001	0.008	0.002	8.74
233			3	-0.114	1.034	0	0.019	0.002	7.473
234			4	-0.057	0.879	0	0.019	0.001	3.408
235			5	0.001	0.724	0	0.019	0	0
236	12	M4	1	9.96	-2.692	0	0	0	0
237			2	9.464	-2.877	0	0	0.001	18.796
238			3	4.315	2.231	-0.001	0	0	26.929
239			4	3.819	2.046	-0.001	0	-0.006	12.494
240			5	3.323	1.862	-0.001	0	-0.011	-0.697
241	13	M1	1	0	0.98	0.077	0	0	0
242			2	0	0.173	-0.043	0	0.142	-4.865
243			3	0	-0.635	-0.164	0	-0.732	-2.918
244			4	0	-0.089	0.108	0	-0.439	-1.686
245			5	0	0	0	0	0	0
246	13	M2	1	0	0.507	0.076	0	0	0
247	. 0		2	0	0.172	0.026	0	0.177	-1.189
248			3	0	-0.163	-0.024	0	0.179	-1.205
249			4	0	-0.498	-0.074	0	0.006	-0.049
250			5	0	0.430	0	0	0.000	0
251	13	M3	1	-0.124	-0.832	0	-0.011	0	0
252	13	UIS	2	-0.124	-0.897	0	-0.011	0.001	3.674
253			3	0.166	1.026	0	-0.004	0.001	8.169
254			4	0.089	0.961	0	-0.004	0.001	3.946
255			5	0.012	0.896	0	-0.004	0	0
256	13	M4	1	3.522	3.101	0	0	0	0
257			2	3.313	3.347	0	0	0.001	-21.761
258			3	2.407	-2.979	0	0	0	-30.394
259			4	2.198	-2.734	0	0	-0.003	-11.113
260			5	1.989	-2.488	0	0	-0.007	6.509

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
261	14	M1	1	0	0.296	-0.078	0	0	0
262			2	0	-0.512	0.042	0	-0.152	0.912
263			3	0	-1.319	0.163	0	0.712	8.637
264			4	0	1.115	-0.106	0	0.427	5.145
265			5	0	0	0	0	0	0
266	14	M2	1	0	0.505	-0.076	0	0	0
267			2	0	0.17	-0.026	0	-0.177	-1.183
268			3	0	-0.165	0.024	0	-0.179	-1.193
269			4	0	-0.499	0.074	0	-0.006	-0.031
270			5	0	0	0	0	0	0
271	14	M3	1	0.124	-0.834	0	0.009	0	0
272			2	0.201	-0.899	0	0.009	0	3.682
273			3	-0.168	-0.177	0	0.009	0	-2.06
274			4	-0.091	-0.242	0	0.009	0	-1.169
275			5	-0.014	-0.308	0	0.009	0	0
276	14	M4	1	2.32	-3.024	0	0	0	0
277			2	2.111	-3.27	0	0	0	21.243
278			3	1.206	2.977	0	0	0	29.535
279			4	0.997	2.732	0	0	0	10.267
280			5	0.788	2.486	0	0	-0.001	-7.341

Maximum Member Section Forces

		Member Labe				y Shear[k]Loc[ft]	z Shear[k	[Loc[ft]	Torque[k-ft]Loc[ft]	y-y Moment[k-f	t]Loc[ft];	z-z Moment[k-1	t]Loc[ft]
1	1	M1	max	0	33.75	0.002	30.938	0	30.938	0	33.75	0	33.75	0.018	19.688
2			min	0	20.039	-0.001	0	0	0	0	0	0	19.688	0	0
3	1	M2	max	0	14	0	11.229	0	14	0	14	0	14	0	14
4			min	0	0	0	11.375	0	0	0	0	0	0	0	11.229
5	1	M3	max	0	5.49	0	5.49	0	5.49	0	17	0	5.49	0	17
6			min	0	5.667	-0.002	5.667	0	5.667	0	0	0	0	-0.018	5.667
7	1	M4	max	3.998	11.25	0.002	11.25	0	11.25	0	27	0	11.25	0	0
8			min	-0.002	11.531	0	11.531	0	11.531	0	0	0	27	-0.018	27
9	2	M1	max	0	33.75	3.06	20.039	0.01	19.688	0	33.75	0.195	19.688	19.007	19.688
10			min	0	20.039	-3.623	19.688	-0.017	20.039	0	0	0	0	-5.303	6.328
11	2	M2	max	0	14	0	14	0	14	0	14	0	14	0.004	11.229
12			min	0	0	0	0	0	0	0	0	0	0	0	0
13	2	M3	max	0.017	17	0.642	17	0	5.49	0.01	17	0.002	5.49	7.271	5.667
14			min	0	0	0	0	0	5.667	0.004	0	0	0	0	0
15	2	M4	max	0.642	27	-0.017	27	0	11.25	0	27	0.001	11.25	7.377	27
16			min	0.642	0	-0.632	0	0	11.531	0	0	-0.006	27	0	0
17	3	M1	max	0	33.75	0.489	19.688	0.261	20.039	0	33.75	0.302	5.273	0	33.75
18			min	0	20.039	-0.859	20.039	-0.291	19.688	0	0	-1.768	19.688	-9.623	19.688
19	3	M2	max	0	14	0.001	11.229	0.108	0	0	14	0.285	5.25	0	14
20			min	0	0	0	11.375	-0.121	11.229	0	0	-0.075	11.229	-0.014	11.229
21	3	M3	max	0.311	5.667	0.858	17	0	5.49	-0.009	17	0.001	5.49	9.728	5.667
22			min	-0.319	5.49	0.003	0	0	5.667	-0.014	0	0	0	-0.014	5.49
23	3	M4	max	0.858	27	4.956	11.25	0	11.25	0	27	0.001	11.25	9.885	27
24			min	0.858	0	-4.354	11.531	0	11.531	0	0	-0.004	27	-52.462	11.25
25	4	M1	max	0	30.938	0.857	30.938	0.291	19.688	0	33.75	1.766	19.688	9.6	19.688
26			min	0	0	-0.488	0	-0.261	20.039	0	0	-0.302	5.273	0	0
27	4	M2	max	0	11.229	0	14	0.121	11.229	0	14	0.075	11.229	0.014	11.229
28			min	0	11.375	-0.001	0	-0.108	0	0	0	-0.285	5.25	0	0
29	4	M3	max	0.319	5.49	0	5.49	0	17	0.014	5.49	0	17	0	17
30			min	-0.311	5.667	-0.857	5.667	0	0	0.009	5.667	-0.001	5.49	-9.717	5.667
31	4	M4	max	-0.856	10.969	4.346	11.531	0	27	0	27	0.004	27	52.363	11.25
32			min	-0.856	11.25	-4.947	11.25	0	0	0	0	-0.001	11.25	-9.859	27

Maximum Member Section Forces (Continued)

	LC	Member Labe		Axial[k]	Loc[ft]	y Shear[k	[Loc[ft]		[Loc[ft]	Torque[k-ft		/-y Moment[k-f	t]Loc[ft]	z-z Moment[k-i	ft]Loc[ft]
33	5	M1	max	0	33.75	2.193	20.039	0.002	30.938	0	33.75	0	33.75	12.907	19.688
34			min	0	20.039	-2.685	19.688	-0.001	0	0	0	-0.024	19.688	-4.577	6.68
35	5	M2	max	0	14	1.091	0	0	14	0	14	0	14	0.752	11.229
36			min	0	0	-1.224	11.229	0	0	0	0	0	0	-2.884	5.25
37	5	M3	max	0	5.49	1.008	5.667	0	5.49	0.006	17	0.002	5.49	10.355	5.49
38		1110		-0.002		-1.977	5.49	0	5.667	-0.002	0	0	0.10	0	0.10
39	5	M4		6.291	0	0.078	11.25	0	11.25	0.002	27	0.001	11.25	0	0
40	5	1114		2.991	27	0.002	11.531	-0.001	11.531	0	0	-0.008	27	-0.909	27
-	6	M1			33.75		20.039		30.938	0	33.75		33.75	12.925	
41	6		max			2.195				-		0			19.688
42			min		20.039		19.688	_	0	0	0	-0.025	19.688	-4.571	6.68
43	6	M2	max		14	1.091	0	0	14	0	14	0	14	0.752	11.229
44			min	0	0	-1.224	11.229	0	0	0	0	0	0	-2.884	5.25
45	6	M3	max		5.49	1.006	5.667	0	5.49	0.006	17	0.002	5.49	10.355	5.49
46			min	-0.002	5.667	-1.977	5.49	0	5.667	-0.002	0	0	0	0	0
47	6	M4	max	10.29	0	0.08	11.25	0	11.25	0	27	0.001	11.25	0	0
48			min	2.989	27	0.002	11.531	-0.001	11.531	0	0	-0.008	27	-0.927	27
49	7	M1	max	0	33.75	5.254	20.039	0.009	19.688	0	33.75	0.172	19.688	31.921	19.688
50			min	0	20.039	-6.308	19.688	-0.015	20.039	0	0	0	0	-9.866	6.328
51	7	M2	max	-	14	1.09	0	0	14	0	14	0	14	0.756	11.229
52					0	-1.225	11.229	-	0	0	0	0	0	-2.882	5.25
53	7	M3		0.015	17	1.649	5.667	0.001	5.49	0.016	17	0.004	5.49	16.563	5.667
54		into into	min	0.010	0	-1.977	5.49	0.001	5.667	0.002	0	0	0.10	0	0.007
55	7	M4		6.933	0	-0.012	27	0	11.25	0.002	27	0.002	11.25	6.46	27
56	'	1114		3.632	27	-0.557	0	-0.001	11.531	0	0	-0.014	27	0.40	0
57	8	M1			33.75	4.49	20.039		19.688	-	33.75	0.122	19.688	27.181	19.688
-	0		max							-		-			_
58	0	140	min		20.039		19.688		20.039		0	0	0	-8.536	6.328
59	8	M2	max	0	14	1.09	0	0	14	0	14	0	14	0.755	11.229
60				-0.001	0	-1.225	11.229	0	0	0	0	0	0	-2.883	5.25
61	8	M3		0.011	17	1.487	5.667	0.001	5.49	0.013	17	0.003	5.49	14.733	5.667
62			min	0	0	-1.977	5.49	0	5.667	0.001	0	0	0	0	0
63	8	M4	max	9.771	0	-0.009	27	0	11.25	0	27	0.002	11.25	4.604	27
64			min	3.47	27	-0.397	0	-0.001	11.531	0	0	-0.013	27	0	0
65	9	M1	max	0	33.75	1.904	0	0.185	20.039	0	33.75	0.203	5.273	7.895	19.688
66			min	0	20.039	-2.706	19.688	-0.205	19.688	0	0	-1.268	19.688	-7.74	8.086
67	9	M2	max	0	14	1.239	0	0.076	0	0	14	0.2	5.25	0.845	11.229
68			min	-0.001	0	-1.39	11.229	-0.085	11.229	0	0	-0.052	11.229	-3.28	5.25
69	9	M3		0.215	5.667	1.748	5.667	0.001	5.49	0	17	0.003	5.49	17.404	5.667
70						-2.244	5.49	0	5.667	-0.012	0	0	0	0	0
71	9	M4		7.749	0.40	3.572	11.25	0	11.25	0.012	27	0.002	11.25	5.92	27
72			min	4	27	-3.058	11.531	-0.001	11.531	0	0	-0.012	27	-37.885	11.25
73	10	M1		-	33.75	3.094	20.039		19.688	-	33.75	1.212	19.688	21.412	19.688
74			max min		20.039	-3.393	19.688		20.039			-0.218	5.625		5.273
											0				
75	10	M2	max		14	1.238	0		11.229	-	14	0.052	11.229		11.229
76	4.2	140	min		0		11.229		0	0	0	-0.2	5.25	-3.271	5.25
77	10	M3		0.223		0.541	5.667	0	5.49	0.013	17	0.002	5.49	11.764	5.49
78				-0.22		-2.246	5.49	0	5.667	0.007	0	0	0	0	0
79	10	M4		6.544	0	3.058	11.531		11.25		27	0.001	11.25	35.832	11.25
80			min	2.795		-3.39	11.25		11.531		0	-0.006	27	-7.973	27
81	11	M1	max		33.75	4.261	20.039	0.126	20.039		33.75	0.193	5.977	23.423	19.688
82			min	0	20.039	-5.419	19.688	-0.147	19.688	0	0	-0.811	19.688	-10.751	7.031
83	11	M2	max		14	1.202	0	0.057	0	0	14	0.15	5.25	0.824	11.229
84				-0.001		-1.349	11.229		11.229	-	0	-0.039	11.229		5.25
85	11	M3		0.174		2.043	5.667	0.001	5.49	0.009	17	0.004	5.49	20.814	5.667
86				-0.168		-2.178	5.49	0.001	5.667	-0.007	0	0.004	0.40	0	0.007
87	11	M4		10.864		2.216	10.969		10.969		27	0.002	11.25	9.726	27
07	11		max	10.004	0	2.210	10.000	0	10.000	0	21	0.002	11.20	0.120	<u> </u>

Maximum Member Section Forces (Continued)

	LC	Member Label	I .	Axial[k]	Loc[ft]	y Shear[k]Loc[ft]	z Shear[k]Loc[ft]	Torque[k-ft]	Loc[ft]	y-y Moment[k-f	t]Loc[ft]:	z-z Moment[k-i	ft]Loc[ft]
88			min	4.227	27	-2.311	11.25	-0.001	11.25	0	0	-0.016	27	-23.285	11.25
89	12	M1	max	0	33.75	5.166	20.039	0.159	19.688	0	33.75	1.05	19.688	33.562	19.688
90			min	0	20.039	-5.934	19.688	-0.148	20.039	0	0	-0.127	4.922	-7.416	5.977
91	12	M2	max	0	14	1.201	0	0.064	11.229	0	14	0.039	11.229	0.839	11.229
92			min	-0.001	0	-1.35	11.229	-0.057	0	0	0	-0.15	5.25	-3.173	5.25
93	12	M3	max	0.168	5.49	1.137	5.667	0.001	5.49	0.019	17	0.003	5.49	11.413	5.49
94			min	-0.152	5.667	-2.179	5.49	0	5.667	0.008	0	0	0	0	0
95	12	M4	max	9.96	0	2.285	11.531	0	11.25	0	27	0.002	11.25	32.018	11.25
96			min	3.323	27	-3	11.25	-0.001	11.531	0	0	-0.011	27	-0.697	27
97	13	M1	max	0	33.75	0.98	0	0.184	20.039	0	33.75	0.208	5.273	0.327	30.938
98			min	0	20.039	-0.904	19.688	-0.204	19.688	0	0	-1.25	19.688	-5.021	10.195
99	13	M2	max	0	14	0.507	0	0.076	0	0	14	0.2	5.25	0.34	11.229
100			min	0	0	-0.568	11.229	-0.085	11.229	0	0	-0.052	11.229	-1.343	5.25
101	13	M3	max	0.217	5.667	1.07	5.667	0	5.49	-0.004	17	0.002	5.49	11.138	5.667
102			min	-0.223	5.49	-0.916	5.49	0	5.667	-0.011	0	0	0	0	0
103	13	M4	max	3.522	0	3.511	11.25	0	11.25	0	27	0.001	11.25	6.509	27
104			min	1.989	27	-3.051	11.531	0	11.531	0	0	-0.007	27	-37.19	11.25
105	14	M1	max	0	33.75	1.619	20.039	0.203	19.688	0	33.75	1.226	19.688	12.726	19.688
106			min	0	20.039	-1.588	19.688	-0.182	20.039	0	0	-0.214	5.625	-0.456	3.164
107	14	M2	max	0	14	0.505	0	0.085	11.229	0	14	0.052	11.229	0.359	11.229
108			min	0	0	-0.569	11.229	-0.076	0	0	0	-0.2	5.25	-1.334	5.25
109	14	M3	max	0.223	5.49	-0.134	5.667	0	5.49	0.009	17	0	5.49	4.809	5.49
110			min	-0.219	5.667	-0.918	5.49	0	5.667	0.009	0	0	0	-2.501	5.667
111	14	M4	max	2.32	0	3.049	11.531	0	11.25	0	27	0	11.25	36.326	11.25
112			min	0.788	27	-3.434	11.25	0	11.531	0	0	-0.001	27	-7.341	27

Member End Reactions

	LC	Member Label	Member End	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
1	1	M1		0	-0.001	0	0	0	0
2			J	0	0	0	0	0	0
3	1	M2		0	0	0	0	0	0
4			J	0	0	0	0	0	0
5	1	M3		0	0	0	0	0	0
6			J	0	-0.002	0	0	0	0
7	1	M4		3.998	0.002	0	0	0	0
8			J	-0.002	0	0	0	0	-0.018
9	2	M1	I	0	1.692	0.01	0	0	0
10			J	0	0	0	0	0	0
11	2	M2	I	0	0	0	0	0	0
12			J	0	0	0	0	0	0
13	2	M3	I	0	0	0	0.004	0	0
14			J	0.017	0.642	0	0.01	0	0
15	2	M4		0.642	-0.632	0	0	0	0
16			J	0.642	-0.017	0	0	-0.006	7.377
17	3	M1		0	0.489	0.111	0	0	0
18			J	0	0	0	0	0	0
19	3	M2	I	0	0.001	0.108	0	0	0
20			J	0	0	0	0	0	0
21	3	M3	I	-0.178	0.003	0	-0.014	0	0
22			J	0.019	0.858	0	-0.009	0	0
23	3	M4	I	0.858	4.371	0	0	0	0
24			J	0.858	-3.549	0	0	-0.004	9.885
25	4	M1		0	-0.488	-0.111	0	0	0
26			J	0	0	0	0	0	0
27	4	M2		0	-0.001	-0.108	0	0	0

Member End Reactions (Continued)

	LC	Member Label			v Shoar[k]	z Shoar[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
28	LU		J				0	<u>y-y Moment[k-it]</u>	2-2 Monentik-itj 0
29	4	M3	J	0.178	0	0	0.014	0	0
30	4	IVIS	J	-0.019	-0.857	0	0.009	0	0
31	4	M4	J	-0.856	-4.362	0	0.009	0	0
32	4	1014		-0.856	3.541	0	0	0.004	-9.859
33	5	M1	J		1.374	-0.001	0	0.004	-9.859
	5	IVI I		0			-	-	-
34	F	MO	J	0	0	0	0	0	0
35	5	M2		0	1.091	0		0	•
36	-	140	J	0	0	0	0	0	0
37	5	M3		0	-1.796	0	-0.002	0	0
38	-	544	J	-0.002	0.633	0	0.006	0	0
39	5	M4		6.291	0.078	0	0	0	0
40	•		J	2.991	0.002	-0.001	0	-0.008	-0.909
41	6	M1		0	1.373	-0.001	0	0	0
42	•		J	0	0	0	0	0	0
43	6	M2		0	1.091	0	0	0	0
44			J	0	0	0	0	0	0
45	6	M3		0	-1.796	0	-0.002	0	0
46			J	-0.002	0.632	0	0.006	0	0
47	6	M4		10.29	0.08	0	0	0	0
48			J	2.989	0.002	-0.001	0	-0.008	-0.927
49	7	M1		0	3.066	0.009	0	0	0
50			J	0	0	0	0	0	0
51	7	M2		-0.001	1.09	0	0	0	0
52			J	0	0	0	0	0	0
53	7	M3		0	-1.796	0.001	0.002	0	0
54			J	0.015	1.274	0	0.016	0	0
55	7	M4		6.933	-0.557	0	0	0	0
56			J	3.632	-0.012	-0.001	0	-0.014	6.46
57	8	M1		0	2.642	0.006	0	0	0
58			J	0	0	0	0	0	0
59	8	M2		-0.001	1.09	0	0	0	0
60			J	0	0	0	0	0	0
61	8	M3		0	-1.796	0.001	0.001	0	0
62			J	0.011	1.113	0	0.013	0	0
63	8	M4		9.771	-0.397	0	0	0	0
64			J	3.47	-0.009	-0.001	0	-0.013	4.604
65	9	M1		0	1.904	0.076	0	0	0
66			J	0	0	0	0	0	0
67	9	M2		-0.001	1.239	0.076	0	0	0
68			J	0	0	0	0	0	0
69	9	M3		-0.124	-2.038	0.001	-0.012	0	0
70			J	0.011	1.323	0	0	0	0
71	9	M4	I	7.749	3.163	0	0	0	0
72			J	4	-2.495	-0.001	0	-0.012	5.92
73	10	M1		0	1.217	-0.079	0	0	0
74			J	0	0	0	0	0	0
75	10	M2		0	1.238	-0.076	0	0	0
76			J	0	0	0	0	0	0
77	10	M3		0.124	-2.04	0	0.007	0	0
78			J	-0.016	0.116	0	0.013	0	0
79	10	M4		6.544	-2.98	0	0	0	0
80	-		J	2.795	2.495	0	0	-0.006	-7.973
81	11	M1		0	3.04	0.064	0	0	0
82			J	0	0	0	0	0	0
		1	, J	,	~	2	3	3	.

Member End Reactions (Continued)

	LC	Member Label	Member End	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
83	11	M2	I	-0.001	1.202	0.057	0	0	0
84			J	0	0	0	0	0	0
85	11	M3	I	-0.093	-1.978	0.001	-0.007	0	0
86			J	0.02	1.63	0	0.009	0	0
87	11	M4	I	10.864	1.916	0	0	0	0
88			J	4.227	-1.881	-0.001	0	-0.016	9.726
89	12	M1		0	2.525	-0.052	0	0	0
90			J	0	0	0	0	0	0
91	12	M2		-0.001	1.201	-0.057	0	0	0
92			J	0	0	0	0	0	0
93	12	M3	I	0.093	-1.979	0.001	0.008	0	0
94			J	0.001	0.724	0	0.019	0	0
95	12	M4		9.96	-2.692	0	0	0	0
96			J	3.323	1.862	-0.001	0	-0.011	-0.697
97	13	M1		0	0.98	0.077	0	0	0
98			J	0	0	0	0	0	0
99	13	M2		0	0.507	0.076	0	0	0
100			J	0	0	0	0	0	0
101	13	M3	<u> </u>	-0.124	-0.832	0	-0.011	0	0
102			J	0.012	0.896	0	-0.004	0	0
103	13	M4	I	3.522	3.101	0	0	0	0
104			J	1.989	-2.488	0	0	-0.007	6.509
105	14	M1	I	0	0.296	-0.078	0	0	0
106			J	0	0	0	0	0	0
107	14	M2		0	0.505	-0.076	0	0	0
108			J	0	0	0	0	0	0
109	14	M3		0.124	-0.834	0	0.009	0	0
110			J	-0.014	-0.308	0	0.009	0	0
111	14	M4		2.32	-3.024	0	0	0	0
112			J	0.788	2.486	0	0	-0.001	-7.341

Beam Deflections

	LC	Member Label	Span	Location [ft]	y' [in]	(n) L'/y' Ratio
1	1	M1	1	19.688	0	NC
2			2	33.75	-0.001	NC
3	1	M2	1	14	0	NC
4	1	M3	1	5.49	0	NC
5			2	17	0	NC
6	2	M1	1	19.688	0.001	NC
7			2	33.75	-0.355	945
8	2	M2	1	14	0	NC
9	2	M3	1	5.49	0	NC
10			2	17	-0.145	1906
11	3	M1	1	11.25	-0.059	4044
12			2	33.75	0.354	949
13	3	M2	1	14	0	NC
14	3	M3	1	5.49	0	NC
15			2	17	-0.194	1424
16	4	M1	1	11.25	0.058	4053
17			2	33.75	-0.353	951
18	4	M2	1	14	0	NC
19	4	M3	1	5.49	0	NC
20			2	17	0.194	1426
21	5	M1	1	7.383	-0.025	9370
22			2	33.75	-0.212	1582

Beam Deflections (Continued)

	LC	Member Label	Span	Location [ft]	y' [in]	(n) L'/y' Ratio
23	5	M2	1	14	0.042	7912
24	5	M3	1	0	-0.049	2673
25			2	17	-0.175	1576
26	6	M1	1	7.383	-0.025	9404
27			2	33.75	-0.213	1577
28	6	M2	1	14	0.042	7912
29	6	M3	1	0	-0.049	2673
30			2	17	-0.175	1579
31	7	M1	1	7.031	-0.048	4941
32			2	33.75	-0.568	591
33	7	M2	1	14	0.042	7918
34	7	M3	1	0	-0.049	2672
35			2	17	-0.32	863
36	8	M1	1	7.031	-0.042	5613
37			2	33.75	-0.48	700
38	8	M2	1	14	0.042	7916
39	8	M3	1	0	-0.049	2672
40			2	17	-0.283	974
41	9	M1	1	9.141	-0.066	3614
42			2	25.313	0.01	NC
43	9	M2	1	14	0.048	6954
44	9	M3	1	0	-0.056	2355
45			2	17	-0.335	823
46	10	M1	1	15.117	0.032	7444
47			2	33.75	-0.49	686
48	10	M2	1	14	0.048	6978
49	10	M3	1	0	-0.056	2353
50			2	17	-0.063	4401
51	11	M1	1	8.086	-0.071	3351
52			2	33.75	-0.315	1068
53	11	M2	1	14	0.047	7174
54	11	M3	1	0	-0.054	2427
55			2	17	-0.403	684
56	12	M1	1	16.172	0.032	7447
57			2	33.75	-0.688	488
58	12	M2	1	14	0.047	7194
59	12	M3	1	0	-0.054	2425
60			2	17	-0.199	1387
61	13	M1	1	9.844	-0.05	4726
62			2	33.75	0.15	2245
63	13	M2	1	3.792	0.001	NC
64	13	M3	1	0	-0.023	5769
65			2	17	-0.217	1271
66	14	M1	1	13.359	0.035	6777
67			2	33.75	-0.346	970
68	14	M2	1	3.792	0.001	NC
69	14	M3	1	0	-0.023	5756
70			2	17	0.054	5064

AISC 15TH (360-16): ASD Member Steel Code Checks

	LC	Member	Shape	UC Max	Loc[ft]	Shear UC	Loc[ft]	Dir	Pnc/om [k]	Pnt/om [k]	Mnyy/om [k-ft]	Mnzz/om [k-ft]	Cb	Eqn
1	1	M3	W10X33	0	17	0	5.49	z	129.682	290.719	34.93	96.806	1.885	H1-1b*
2	1	M4	W16X67	0.023	11.25	0	11.25	y	170.388	586.826	88.573	219.402	1.13	H1-1b*
3	2	M3	W10X33	0.075	5.667	0.016	17	y	129.682	290.719	34.93	96.806	1.887	H1-1b
4	2	M4	W16X67	0.036	27	0.005	11.25	y	170.388	586.826	88.573	219.25	1.13	H1-1b

AISC 15TH (360-16): ASD Member Steel Code Checks (Continued)

	LC	Member	Shape	UC Max	Loc[ft]	Shear UC	Loc[ft]	Dir	Pnc/om [k]	Pnt/om [k]	Mnyy/om [k-ft]	Mnzz/om [k-ft]	Cb	Eqn
5	3	M3	W10X33	0.102	5.667	0.019	17	y	129.682	290.719	34.93	96.806	1.886	H1-1b
6	3	M4	W16X67	0.184	11.25	0.038	11.25	ý	170.388	586.826	88.573	289.257	1.49	H1-1b
7	4	M3	W10X33	0.101	5.667	0.019	17	y	129.682	290.719	34.93	96.806	1.887	H1-1b
8	4	M4	W16X67	0.182	11.25	0.038	11.25	y	170.388	586.826	88.573	289.259	1.49	H1-1b
9	5	M3	W10X33	0.107	5.49	0.036	5.49	y	129.682	290.719	34.93	96.806	1.524	H1-1b
10	5	M4	W16X67	0.037	0	0.001	11.25	y	170.388	586.826	88.573	218.573	1.126	H1-1b*
11	6	M3	W10X33	0.107	5.49	0.036	5.49	у	129.682	290.719	34.93	96.806	1.525	H1-1b
12	6	M4	W16X67	0.06	0	0.001	11.25	y	170.388	586.826	88.573	218.574	1.126	H1-1b*
13	7	M3	W10X33	0.171	5.667	0.036	5.667	У	129.682	290.719	34.93	96.806	1.587	H1-1b
14	7	M4	W16X67	0.047	11.25	0.004	11.25	y	170.388	586.826	88.573	218.418	1.125	H1-1b
15	8	M3	W10X33	0.152	5.667	0.035	5.49	y	129.682	290.719	34.93	96.806	1.557	H1-1b
16	8	M4	W16X67	0.057	0	0.003	11.25	y	170.388	586.826	88.573	218.456	1.125	H1-1b*
17	9	M3	W10X33	0.181	5.667	0.045	5.49	y	129.682	290.719	34.93	96.806	1.567	H1-1b
18	9	M4	W16X67	0.152	11.25	0.028	11.25	y	170.388	586.826	88.573	286.541	1.476	H1-1b
19	10	M3	W10X33	0.122	5.49	0.043	5.49	y	129.682	290.719	34.93	96.806	2.153	H1-1b
20	10	M4	W16X67	0.139	11.25	0.026	11.25	y	170.388	586.826	88.573	292.139	1.505	H1-1b
21	11	M3	W10X33	0.216	5.667	0.042	5.49	у	129.682	290.719	34.93	96.806	1.619	H1-1b
22	11	M4	W16X67	0.105	11.25	0.018	11.25	y	170.388	586.826	88.573	309.944		H1-1b
23	12	M3	W10X33	0.119	5.49	0.042	5.49	y	129.682	290.719	34.93	96.806	1.504	H1-1b
24	12	M4	W16X67	0.143	11.25	0.023	11.25	ÿ	170.388	586.826	88.573	275.83	1.421	H1-1b
25	13	M3	W10X33	0.116	5.667	0.021	5.49	у	129.682	290.719	34.93	96.806	1.67	H1-1b
26	13	M4	W16X67	0.138	11.25	0.027	11.25	ÿ	170.388	586.826	88.573	288.12	1.484	H1-1b
27	14	M3	W10X33	0.051	5.49	0.02	5.49	y	129.682	290.719	34.93	96.806	1.726	H1-1b
28	14	M4	W16X67	0.131	11.25	0.027	11.25	y	170.388	586.826	88.573	290.412	1.496	H1-1b

AWC NDS-18: ASD Member Wood Code Checks

	LC	Membe	r Shape	UC Max	Loc[ft]	Shear UC	CLoc[ft] Dir	Fc' [ksi]	Fť [ksi]	Fb1' [ksi]	Fb2' [ksi]	Fv' [ksi]	RB	CL	СР	Eqn
1	1	M1	5.125X21FS	0	19.688	0	30.938 y	1.355	1.1	2.16	1.45	0.265	17.995			73.9-3
2	1	M2	5.125X21FS	0	11.229	0	11.229 y	1.577	1.1	2.363	1.45	0.265	4.38	0.998	0.985	53.9-1
3	2	M1	5.125X21FS	0.299	19.688	0.191	19.688 y	1.355	1.1	2.16	1.45	0.265	17.995	0.9	0.847	73.9-3
4	2	M2	5.125X21FS	0	11.229	0	11.229 y	1.577	1.1	2.347	1.45	0.265	11.59	0.978	0.985	53.9-1
5	3	M1	5.125X21FS	0.334	19.688	0.05	30.938 y	1.254	0.99	1.948	1.305	0.239	4.38	0.998	0.871	13.9-3
6	3	M2	5.125X21FS	0.029	5.25	0.008	11.229 z	1.421	0.99	2.127	1.305	0.207	4.38	0.998	0.987	/3.9-1
7	4	M1	5.125X21FS	0.335	19.688	0.05	30.938 y	1.254	0.99	1.948	1.305	0.239	17.995	0.92	0.871	3.9-3
8	4	M2	5.125X21FS	0.029	5.25	0.008	11.229 z	1.421	0.99	2.119	1.305	0.207	11.59	0.981	0.987	/3.9-3
9	5	M1	5.125X21FS	0.214	19.688	0.157	19.688 y	1.254	0.99	1.948	1.305	0.239	17.995			
10	5	M2	5.125X21FS	0.043	5.25	0.072	11.229 y	1.421	0.99	2.127	1.305	0.239	4.38	0.998	0.987	73.9-3
11	6	M1	5.125X21FS	0.193	19.688	0.141	19.688 y	1.355	1.1	2.16	1.45	0.265	17.995	0.9	0.847	73.9-3
12	6	M2	5.125X21FS	0.039	5.25	0.064	11.229 y	1.577	1.1	2.363	1.45	0.265	4.38	0.998	0.985	53.9-3
13	7	M1	5.125X21FS	0.442	19.688	0.289	19.688 y	1.484	1.265	2.382	1.667	0.305	17.995	0.863	0.806	<u>3.9-3</u>
14	7	M2	5.125X21FS	0.034	5.25	0.056	11.229 y	1.809	1.265	2.718	1.667	0.305	4.38	0.997	0.983	33.9-3
15	8	M1	5.125X21FS	0.374	19.688	0.247	19.688 y	1.484	1.265	2.382	1.667	0.305	17.995	0.863	0.806) 3.9-3
16	8	M2	5.125X21FS	0.034	5.25	0.056	11.229 y	1.809	1.265	2.718	1.667	0.305	4.38	0.997	0.983	33.9-3
17	9	M1	5.125X21FS		19.688	0.089	19.688 y	1.736	1.76	2.773	2.32	0.424	17.995	0.722	0.678	3.9-3
18	9	M2	5.125X21FS	0.039	5.25	0.046	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3
19	10	M1	5.125X21FS	0.318	19.688	0.112	19.688 y	1.736	1.76	2.773	2.32	0.424	17.995	0.722	0.678	3.9-3
20	10	M2	5.125X21FS	0.039	5.25	0.046	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3
21	11	M1	5.125X21FS		19.688	0.178	19.688 y	1.736	1.76	2.773	2.32	0.424	17.995	0.722	0.678	33.9-3
22	11	M2	5.125X21FS	0.035	5.25	0.044	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3
23	12	M1	5.125X21FS	0.452	19.688	0.195	19.688 y	1.736	1.76	2.773	2.32	0.424	17.995	0.722	0.678	33.9-3
24	12	M2	5.125X21FS	0.035	5.25	0.044	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3
25	13	M1	5.125X21FS		19.688	0.032	0 у	1.736	1.76	3.463	2.32	0.424				33.9-3
26	13	M2	5.125X21FS	0.023	5.25	0.019	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3
27	14	M1	5.125X21FS	0.216	19.688	0.053	20.039 y	1.736	1.76	2.773	2.32	0.424	17.995			
28	14	M2	5.125X21FS	0.022	5.25	0.019	11.229 y	2.496	1.76	3.781	2.32	0.424	4.38	0.996	0.975	53.9-3

Envelope Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N11	max	0	11	3.066	7	0.111	4	0	14	0	14	0	14
2		min	0	4	-0.488	4	-0.111	3	0	1	0	1	0	1
3	N9	max	0	11	11.73	7	0.558	4	0	14	0	14	0	14
4		min	0	4	-1.348	3	-0.559	3	0	1	0	1	0	1
5	N8	max	0.001	11	1.239	9	0.108	4	0	14	0	14	0	14
6		min	0	4	-0.001	4	-0.108	3	0	1	0	1	0	1
7	N1	max	0	11	10.864	11	4.371	3	0	14	0	14	0	14
8		min	0	4	-0.856	4	-4.362	4	0	1	0	1	0	1
9	N2	max	0	4	0	14	9.312	4	0	14	0	14	0	14
10		min	-0.001	11	0	1	-9.32	3	0	1	0	1	0	1
11	Totals:	max	0	11	24.937	12	5.727	4						
12		min	0	4	0	3	-5.727	3						

Envelope Node Displacements

	Node Label		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
1	N1	max	0	4	0	4	0	4	5.475e-4	4	1.455e-6	11	2.378e-7	11
2		min	0	11	0	11	0	3	-5.486e-4	3	-3.964e-7	4	-6.552e-8	4
3	N2	max	0	11	0	4	0	3	1.331e-3	3	1.455e-6	11	1.322e-7	4
4		min	0	4	-0.003	11	0	4	-1.329e-3	4	-3.964e-7	4	-4.799e-7	11
5	N3	max	0	4	0.001	4	0.559	3	3.403e-3	3	1.455e-6	11	4.929e-6	11
6		min	0	11	-0.005	11	-0.558	4	-3.396e-3	4	-3.964e-7	4	-1.349e-6	4
7	N4	max	0	4	0.225	4	0.559	3	0	14	3.793e-3	3	1.666e-3	3
8		min	0	11	-0.227	9	-0.558	4	0	1	-3.785e-3	4	-1.664e-3	4
9	N5	max	0	4	0.275	3	0.56	3	0	14	5.07e-3	3	4.768e-3	12
10		min	0	11	-0.529	12	-0.558	4	0	1	-5.06e-3	4	-2.39e-3	3
11	N6	max	0	4	0.28	4	0.685	3	0	14	3.82e-3	3	1.666e-3	3
12		min	0	11	-0.28	3	-0.684	4	0	1	-3.812e-3	4	-1.664e-3	4
13	N7	max	0	4	0.354	3	0.727	3	0	14	5.097e-3	3	4.798e-3	12
14		min	0	11	-0.688	12	-0.726	4	0	1	-5.087e-3	4	-2.39e-3	3
15	N8	max	0	4	0	4	0	3	0	14	4.552e-3	3	1.928e-3	9
16		min	0	11	0	9	0	4	0	1	-4.544e-3	4	-1.665e-3	4
17	N9	max	0	4	0	3	0	3	0	14	1.991e-3	3	1.756e-3	12
18		min	0	11	0	7	0	4	0	1	-1.986e-3	4	-1.293e-3	3
19	N11	max	0	4	0	4	0	3	0	14	2.834e-4	11	1.227e-3	11
20		min	0	11	0	7	0	4	0	1	-2.603e-4	4	-6.335e-4	4

Envelope Member Section Forces

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
1	M1	1	max	0	14	3.066	7	0.111	3	0	14	0	14	0	14
2			min	0	1	-0.488	4	-0.111	4	0	1	0	1	0	1
3		2	max	0	14	0.489	3	0.061	4	0	14	0.211	3	4.114	4
4			min	0	1	-1.1	12	-0.061	3	0	1	-0.212	4	-10.354	11
5		3	max	0	14	0.489	3	0.233	4	0	14	1.029	4	18.57	12
6			min	0	1	-4.969	7	-0.233	3	0	1	-1.031	3	-8.248	3
7		4	max	0	4	2.9	12	0.153	3	0	14	0.617	4	11.153	12
8			min	0	11	-0.859	3	-0.153	4	0	1	-0.618	3	-4.876	3
9		5	max	0	14	0	14	0	14	0	14	0	14	0	14
10			min	0	1	0	1	0	1	0	1	0	1	0	1
11	M2	1	max	0	4	1.239	9	0.108	3	0	14	0	14	0	14
12			min	-0.001	11	-0.001	4	-0.108	4	0	1	0	1	0	1
13		2	max	0	4	0.42	9	0.037	3	0	14	0.253	3	0.004	4
14			min	-0.001	11	-0.001	4	-0.037	4	0	1	-0.253	4	-2.904	9

Envelope Member Section Forces (Continued)

Ν	Vember	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
15		3	max	0	4	0.001	3	0.035	4	0	14	0.255	3	0.008	4
16			min	-0.001	11	-0.401	10	-0.035	3	0	1	-0.255	4	-2.939	9
17		4	max	0	4	0.001	3	0.106	4	0	14	0.008	3	0.013	4
18			min	-0.001	11	-1.221	10	-0.106	3	0	1	-0.008	4	-0.106	9
19		5	max	0	14	0	14	0	14	0	14	0	14	0	14
20			min	0	1	0	1	0	1	0	1	0	1	0	1
21	M3	1	max	0.178	4	0.003	3	0.001	11	0.014	4	0	14	0	14
22			min	-0.178	3	-2.04	10	0	4	-0.014	3	0	1	0	1
23		2	max	0.287	4	0.003	3	0.001	11	0.014	4	0.003	11	9.009	10
24			min	-0.287	3	-2.199	10	0	4	-0.014	3	-0.001	4	-0.011	3
25		3	max	0.238	3	1.94	11	0	4	0.019	12	0.003	11	15.172	11
26			min	-0.238	4	-0.857	4	0	11	-0.009	3	-0.001	4	-7.288	4
27		4	max	0.129	3	1.785	11	0	4	0.019	12	0.002	11	7.257	11
28			min	-0.129	4	-0.857	4	0	11	-0.009	3	0	4	-3.644	4
29		5	max	0.02	11	1.63	11	0	4	0.019	12	0	14	0	14
30			min	-0.019	4	-0.857	4	0	11	-0.009	3	0	1	0	1
31	M4	1	max	10.864	11	4.371	3	0	11	0	14	0	14	0	14
32			min	-0.856	4	-4.362	4	0	4	0	1	0	1	0	1
33		2	max	10.368	11	4.722	3	0	11	0	14	0.001	11	30.628	4
34			min	-0.856	4	-4.713	4	0	4	0	1	0	4	-30.687	3
35		3	max	5.219	11	4.243	4	0	4	0	14	0	4	42.685	4
36			min	-0.856	4	-4.251	3	-0.001	11	0	1	0	11	-42.766	3
37		4	max	4.723	11	3.892	4	0	4	0	14	0.002	4	15.227	4
38			min	-0.856	4	-3.9	3	-0.001	11	0	1	-0.008	11	-15.255	3
39		5	max	4.227	11	3.541	4	0	4	0	14	0.004	4	9.885	3
40			min	-0.856	4	-3.549	3	-0.001	11	0	1	-0.016	11	-9.859	4

Envelope Member End Reactions

	Nember	Member End		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
1	M1		max	0	14	3.066	7	0.111	3	0	14	0	14	0	14
2			min	0	1	-0.488	4	-0.111	4	0	1	0	1	0	1
3		J	max	0	14	0	14	0	14	0	14	0	14	0	14
4			min	0	1	0	1	0	1	0	1	0	1	0	1
5	M2	I	max	0	4	1.239	9	0.108	3	0	14	0	14	0	14
6			min	-0.001	11	-0.001	4	-0.108	4	0	1	0	1	0	1
7		J	max	0	14	0	14	0	14	0	14	0	14	0	14
8			min	0	1	0	1	0	1	0	1	0	1	0	1
9	M3	I	max	0.178	4	0.003	3	0.001	11	0.014	4	0	14	0	14
10			min	-0.178	3	-2.04	10	0	4	-0.014	3	0	1	0	1
11		J	max	0.02	11	1.63	11	0	4	0.019	12	0	14	0	14
12			min	-0.019	4	-0.857	4	0	11	-0.009	3	0	1	0	1
13	M4	I	max	10.864	11	4.371	3	0	11	0	14	0	14	0	14
14			min	-0.856	4	-4.362	4	0	4	0	1	0	1	0	1
15		J	max	4.227	11	3.541	4	0	4	0	14	0.004	4	9.885	3
16			min	-0.856	4	-3.549	3	-0.001	11	0	1	-0.016	11	-9.859	4

Envelope Maximum Member Section Forces

ſ	Membe	r .	Axial[k]	Loc[ft]	LC	/ Shear[k]	Loc[ft]	LC	z Shear[k]	Loc[ft]	LC	Torque[k-ft]	Loc[ft]	LC	y-y Moment[k-ft]	Loc[ft]L	cz-z Mome	ent[k-ft]	Loc[ft]	LC
1	M1	max	0	30.938	4	5.254	20.039	7	0.291	19.688	4	0	33.75	14	1.766	19.688 4	33.56	52	19.688	12
2		min	0	20.039	11	-6.308	19.688	7	-0.291	19.688	3	0	0	1	-1.768	19.688 3	-10.7	51	7.031	11
3	M2	max	0	11.229	4	1.239	0	9	0.121	11.229	4	0	14	14	0.285	5.25 3	0.86	4	11.229	10
4		min	-0.001	0	11	-1.392	11.229	10	-0.121	11.229	3	0	0	1	-0.285	5.25 4	-3.2	8	5.25	9
5	M3	max	0.319	5.49	4	2.043	5.667	11	0.001	5.49	11	0.019	17	12	0.004	5.49 1	1 20.8 ⁻	14	5.667	11

Envelope Maximum Member Section Forces (Continued)

ľ	Member	•	Axial[k]	Loc[ft]	LC	y Shear[k]	Loc[ft]	LC	z Shear[k]	Loc[ft]	LC	Torque[k-ft]	Loc[ft]	LC	y-y Moment[k-ft]	Loc[fl]LC	z-z Moment[k-fi	t]Loc[ft]LC
6		min	-0.319	5.49	3	-2.246	5.49	10	0	5.667	11	-0.014	0	3	-0.001	5.49	4	-9.717	5.667 4
7	M4	max	10.864	0	11	4.956	11.25	3	0	27	4	0	27	14	0.004	27	4	52.363	11.25 4
8		min	-0.856	11.25	4	-4.947	11.25	4	-0.001	11.25	11	0	0	1	-0.016	27	11	-52.462	11.25 3

Material Take-Off

	Material	Size	Pieces	Length[ft]	Weight[K]
1	Hot Rolled Steel				
2	A992	W10X33	1	17	0.562
3	A992	W16X67	1	27	1.801
4	Total HR Steel		2	44	2.362
5					
6	Wood				
7	24F-1.8E DF Balanced	5.125X21FS	2	47.8	1.249
8	Total Wood		2	47.8	1.249

HONG AND KAO RESIDENCE 5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

LATERAL DESIGN – MAIN HOUSE

Seismic Base Shear for the Equivalent Lateral Force Procedure Per IBC 2021 & ASCE 7-16

R:6 1/2per ASCE Table 12.2-1 W_o :3per ASCE Table 12.2-1 C_d :4per ASCE Table 12.2-1 h_n (ft):32.00height above the base to the highest level of the structurSite Ground MotionReg. Structure/5 Stories Max:YesSds (max) = 1.0 S_1 (g-sec):0.51 S_S (g-sec):1.45						
Latitude:47.5540Longitude:-122.2320Structure ClassificationRisk Category:IIper ASCE Table 1.5-1Seismic Force-Resisting System:Light-Framed Wood Walls Sheathed with Structural PanR:6 1/2per ASCE Table 12.2-1 W_0 :3per ASCE Table 12.2-1 C_c :4per ASCE Table 12.2-1 h_n (ft):32.00height above the base to the highest level of the structurSite Ground MotionReg. Structure/S Stories Max:YesSds (max) = 1.0Per ASCE Table 12.2-1 h_n (ft):32.00height above the base to the highest level of the structurSite Ground MotionReg. Structure/S Stories Max:YesSds (max) = 1.0Per ASCE 12.8.1Site Cround MotionFundamental Reportper ASCE 12.8.1Site Cround MotionF. 1.79F. 1.00SMs (g-sec):1.45Song (g-sec):0.97SDC:Dper ASCE Table 1.5-2Period Method:Approximate Fundamental PeriodStructure Type:All Other Structural SystemsT ₁ (sec):0.00ASCE Figures 22-14 through 22-17T ₂ :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7T _{use} (sec):0.27'c = TL		-				
Structure ClassificationRisk Category :IIper ASCE Table 1.5-1Seismic Force-Resisting System:Light-Framed Wood Walls Sheathed with Structural PanelR:6 1/2per ASCE Table 12.2-1Woi3per ASCE Table 12.2-1Cdi4per ASCE Table 12.2-1Light-Framed Wood Walls Sheathed with Structural PanelR:6 1/2per ASCE Table 12.2-1Woi3per ASCE Table 12.2-1Cdi4per ASCE Table 12.2-1hn (ft):32.00height above the base to the highest level of the structureSite Ground MotionStructure/5 Stories Max:YesReg. Structure/5 Stories Max:YesSds (max) = 1.0Per Geotechnical Reportper ASCE 12.8.1Site Class:DPer Geotechnical ReportPer ASCE 10.61Sus (g-sec): 1.45Sob (g-sec): 0.91Sus (g-sec): 0.97SDC:Dper ASCE Table 1.5-2Fundamental Period per ASCE 12.8.2Approximate Fundamental PeriodStructure Type:All Other Structural SystemsTu (sec):0.27Ci (sec):0.27Ci (sec):0.27Ci (sec):0.27Ci (sec):0.27Ci (sec):0.27Ci (mark Multip) for T <= TL					40	
Risk Category :IIper ASCE Table 1.5-1Light-Framed Wood Walls Sheathed with Structural PanelsR:6 1/2per ASCE Table 12.2-1Wo:3per ASCE Table 12.2-1Cd:4per ASCE Table 12.2-1hn (ft):32.00height above the base to the highest level of the structureSite Ground MotionReg. Structure/5 Stories Max:YesSds (max) = 1.0Per ASCE 12.8.1.3S1 (g-sec):1.45Site Class:DPer Geotechnical Reportper ASCE 11.4.3F. 1.79F. 1.00Sur (g-sec):0.61S05 (g-sec):SDC:Dper ASCE 11.6Ic:1.00per ASCE 11.6Ic:1.00per ASCE Table 1.5-2Fundamental Period Per ASCE 12.8.2Period Method:Approximate Fundamental PeriodStructure Type:All Other Structural SystemsTL (sec):0.27Ct * hnx per ASCE Eq. 12.8.7Tuse (sec):0.27'< = TL	Latitude:	47.5	540	Longitude:	-12.	2.2320
Risk Category:IIper ASCE Table 1.5-1Light-Framed Wood Walls Sheathed with Structural PanelsR:6 1/2per ASCE Table 12.2-1Woi3per ASCE Table 12.2-1Cdi4per ASCE Table 12.2-1No (ft):32.00height above the base to the highest level of the structureSite Ground MotionReg. Structure/5 Stories Max:YesStd (g-sec):1.45Site Class:DPer Geotechnical Reportper ASCE 11.6Sus (g-sec):1.45Son (g-sec):0.61Sons (g-sec):SDC:Dper ASCE 11.6Ig:1.00per ASCE 11.6Ig:1.00per ASCE Table 1.5-2Fundamental Period All Other Structural SystemsTL (sec):6.00ASCE Figures 22-14 through 22-17Ts:0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7Tuse (sec):0.27Tuse (sec):0.27'< = TL	Structure Classificat	ion				
Light-Framed Wood Walls Sheathed with Structural PanelsR:6 1/2per ASCE Table 12.2-1Wc:3per ASCE Table 12.2-1Cq:4per ASCE Table 12.2-1hn (ft):32.00height above the base to the highest level of the structureSite Ground MotionReg. Structure/5 Stories Max:YesSds (max) = 1.0Per ASCE Table 12.2-1h, (ft):32.00height above the base to the highest level of the structureSite Ground MotionReg. Structure/5 Stories Max:YesSds (max) = 1.0Per ASCE 12.8.1.3S 1 (g-sec):0.51Sg (g-sec):1.45Site Class:DPer Geotechnical Reportper ASCE 11.4.3F, 1.79F, 1.00Sun (g-sec):0.61Sos (g-sec):SDC:Dper ASCE Table 1.5-2Fundamental Period per ASCE 12.8.2Period Method:Approximate Fundamental PeriodStructure Type:All Other Structural SystemsT (sec):0.27C (sec):0.27 <td></td> <td></td> <td></td> <td>per ASCF Table 1.5-1</td> <td></td> <td></td>				per ASCF Table 1.5-1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Seismic Force-Resis	ting System:	Lig	ght-Framed Wood Walls S	Sheathed with	Structural Panels
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{ccccc} C_{ci} & 4 & \text{per ASCE Table 12.2.1} \\ h_n (ft): & 32.00 & \text{height above the base to the highest level of the structure} \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		W _o :	3	•		
$h_{n} (ft): 32.00 \text{ height above the base to the highest level of the structure}$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	•		
Site Ground MotionReg. Structure/5 Stories Max:YesSds (max) = 1.0Per ASCE 12.8.1.3 S_1 (g-sec):0.51 S_8 (g-sec):1.45Site Class:DPer Geotechnical Reportper ASCE 11.4.3 F_v 1.79 F_a 1.00 S_{M1} (g-sec):0.91 S_{M5} (g-sec):1.45 S_{D1} (g-sec):0.61 S_{D5} (g-sec):0.97SDC:Dper ASCE 11.6 I_E :1.00per ASCE Table 1.5-2Pundamental Period per ASCE 12.8.2Period Method:Approximate Fundamental Period Structure Type: T_L (sec):6.00ASCE Figures 22-14 through 22-17 T_{si} :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27T <= TL			32.00	· ·	the highest leve	el of the structure
Reg. Structure/5 Stories Max: Yes Sds (max) = 1.0 Per ASCE 12.8.1.3 S_1 (g-sec): 0.51 S_8 (g-sec): 1.45 Site Class: D Per Geotechnical Report per ASCE 11.4.3 F_v 1.79 F_a 1.00 S_{M1} (g-sec): 0.91 S_{M5} (g-sec): 1.45 S_{D1} (g-sec): 0.61 S_{DS} (g-sec): 1.45 S_{D1} (g-sec): 0.61 S_{DS} (g-sec): 0.97 SDC: D per ASCE 11.6 I_E : 1.00 I_E : 1.00 per ASCE Table 1.5-2 Eundamental Period Period Method: Approximate Fundamental Period Structure Type: All Other Structural Systems T_L (sec): 6.00 ASCE Figures 22-14 through 22-17 T_s : 0.63 Ta (sec): 0.27 Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec): 0.27 Ct * hnx per ASCE Eq. 12.8-7 Tuse (sec): 0.27 '<= TL				_	J.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Site Ground Motion					
Site Class:DPer Geotechnical Reportper ASCE 11.4.3 F_v 1.79 F_a 1.00 S_{M1} (g-sec):0.91 S_{MS} (g-sec):1.45 S_{D1} (g-sec):0.61 S_{DS} (g-sec):0.97SDC:Dper ASCE 11.6 I_E :1.00 I_E :1.00per ASCE Table 1.5-2Fundamental Period per ASCE 12.8.2Period Method:Approximate Fundamental PeriodStructure Type:All Other Structural Systems T_L (sec):6.00ASCE Figures 22-14 through 22-17 T_s :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 C_s :0.15 $= S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_s :0.15 $= S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-3	Reg. Structure/5		Yes		Per ASCE	12.8.1.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S ₁ (g-sec):	0.51	S _S (g-sec):	1.45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Site Class:	D	Per Geotechnic	al Report	per ASCE 11.4.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F,	1.79			F _a 1.00	
$\begin{split} & S_{D1} (g\text{-sec}): \ 0.61 & S_{DS} (g\text{-sec}): \ 0.97 \\ & \text{SDC:} & D & \text{per ASCE 11.6} \\ & I_E: & 1.00 & \text{per ASCE Table 1.5-2} \end{split}$	·				-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S _{M1} (g-sec):	0.91		S _{MS} (g-s	ec): 1.45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S _{D1} (g-sec):	0.61		S _{DS} (g-s	ec): 0.97	
$ \begin{array}{cccc} I_{E}: & 1.00 & \text{per ASCE Table 1.5-2} \end{array} \\ \hline Fundamental Period per ASCE 12.8.2 \\ \hline Period Method: & Approximate Fundamental Period \\ Structure Type: & All Other Structural Systems \\ T_{L}(sec): & 6.00 & ASCE Figures 22-14 through 22-17 \\ T_{s}: & 0.63 \end{array} \\ \hline Ta (sec): & 0.27 & Ct * hnx per ASCE Eq. 12.8-7 \\ \hline T_{use} (sec): & 0.27 & $			per ASCE		,	
Period Method:Approximate Fundamental Period Structure Type:Structure Type:All Other Structural Systems T_L (sec):6.00ASCE Figures 22-14 through 22-17 T_s :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27 T_{use} (sec):0.27 C_s :0.15 C_s :0.15 C_{s-max} :0.35 $S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_{s-max} :0.35 $S_{D1} / (T_a^*R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3	I _E :	1.00	per ASCE	Table 1.5-2		
Period Method:Approximate Fundamental Period Structure Type:All Other Structural Systems T_L (sec):6.00ASCE Figures 22-14 through 22-17 T_s :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27 $^{-}$ <= TL						
Structure Type:All Other Structural Systems T_L (sec):6.00ASCE Figures 22-14 through 22-17 T_s :0.63Ta (sec):0.27Ct * hnx per ASCE Eq. 12.8-7 T_{use} (sec):0.27 $^{-}$ <= TL						
$\begin{array}{ccc} T_L ({\rm sec}): & {\bf 6.00} \\ T_{\rm s}: & 0.63 \end{array} & {\rm ASCE \ Figures \ 22-14 \ through \ 22-17} \\ T_{\rm s}: & 0.63 \end{array}$					d	
$T_{s}: 0.63$ $Ta (sec): 0.27 Ct * hnx per ASCE Eq. 12.8-7$ $T_{use} (sec): 0.27 <= TL$ $Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8$ $C_{s}: 0.15 = S_{DS} / (R/I_{E}) per ASCE Eq. 12.8-2$ $C_{s-max}: 0.35 = S_{D1} / (T_{a}*R/I_{E}) for T <= T_{L} per ASCE Eq. 12.8-3$	Str					
$Ta (sec): 0.27 Ct * hnx per ASCE Eq. 12.8-7$ $T_{use} (sec): 0.27 <= TL$ $Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8$ $C_s: 0.15 = S_{DS} / (R/I_E) per ASCE Eq. 12.8-2$ $C_{s-max}: 0.35 = S_{D1} / (T_a * R/I_E) for T <= T_L per ASCE Eq. 12.8-3$				ASCE Figures 22-14 thro	ugh 22-17	
$\begin{array}{rcl} T_{use} \mbox{ (sec):} & \mbox{ 0.27 } & \mbox{ <= TL} \end{array}$		T _s :	0.63			
$T_{use} \text{ (sec): } 0.27 <= TL$ $Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8$ $C_s: 0.15 = S_{DS} / (R/I_E) \text{ per ASCE Eq. 12.8-2}$ $C_{s-max}: 0.35 = S_{D1} / (T_a^*R/I_E) \text{ for } T <= T_L \text{ per ASCE Eq. 12.8-3}$		- / 、	0.07			
Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8 C_s : 0.15 = $S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_{s-max} : 0.35 = $S_{D1} / (T_a*R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3		la (sec):	0.27	Ct * hnx per ASCE Eq. 12	2.8-7	
Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8 C_s : 0.15 = $S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_{s-max} : 0.35 = $S_{D1} / (T_a^*R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3		T (sec)	0.27	· /- TI		
C_s : 0.15 = $S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_{s-max} : 0.35 = $S_{D1} / (T_a * R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3		i _{use} (Sec).	0.27	NH IL		
C_s : 0.15 = $S_{DS} / (R/I_E)$ per ASCE Eq. 12.8-2 C_{s-max} : 0.35 = $S_{D1} / (T_a * R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3	Equivalent Lateral F	orce Procedu	ure <u>D</u> esign	Base Shear per ASCE 12	2.8	
C_{s-max} : = $S_{D1}^{*}T_{L} / (T_{a}^{2*}R/I_{E})$ for T > T_{L} per ASCE Eq. 12.8-4		C _{s-max} :	0.35	$= S_{D1} / (T_a * R / I_E)$ for T <= 7	Γ_L per ASCE Ec	ą. 12.8-3
		C _{s-max} :		= $S_{D1}^*T_L / (T_a^2 R/I_E)$ for T	> T _L per ASCE	Eq. 12.8-4
C _{s-min} : 0.04 per ASCE Eq. 12.8-5		C _{s-min} :	0.04	per ASCE Eq. 12.8-5		
C_{s-min} : = 0.5S ₁ / (R/I _E) for S ₁ => 0.6g per ASCE Eq. 12.8-6		C _{s-min} :		= $0.5S_1 / (R/I_E)$ for $S_1 => 0$	0.6g per ASCE	Eq. 12.8-6
C_{s-use} : 0.15			0.15	/ .		
		•				
V : 0.149 W = C _{S-use} * W per ASCE Eq. 12.8-1						

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date:	6/7/23	Job No: 2	23127.01
1511 Third Avenue, Suite 323			Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Vert. Distribution of Seismic Forces for the Equiv. Lateral Force Procedure

Per IBC 2021 & ASCE 7-16

Structure: Hong-Koa Residence

Seismic Parameters

I _E :	1.00	per ASCE Table 1.5-2
S _{DS} (g-sec):	0.97	per ASCE 11.4.4
Period (Sec):	0.27	per ASCE 12.8.2.1
k:	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

 $F_x = C_{vx}V$ per ASCE Eq. 12.8-11

 $C_{vx} = (w_x h_x^{\ k})/(Sw_i h_i^{\ k})$ per ASCE Eq. 12.8-12

Level	h _x (ft)	w _x (k)	$\%$ of W_{total}	$w_x * h_x^k$	C _{vx} (%)	F _x (k)	V _x (k)	F _x /w _x
High Roof	32.00	80.7	17.7%	2583.4	30.2%	20.45	20.45	0.253
Upper Floor	21.00	202.2	44.4%	4246.6	49.7%	33.61	54.06	0.166
Main Floor	10.00	172.2	37.8%	1722.1	20.1%	13.63	67.69	0.079
	Total WT (k):	455.16	Sum:	8552				
	C _{s-use} :	0.149						
	V (k):	67.69	per ASCE 1	2.8.1				

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$\label{eq:Fpx} \begin{split} F_{px} &= (SF_i/Sw_i) * w_{px} \, \text{per ASCE Eq 12.10-1} \\ F_{px\text{-max}} &= 0.4 * S_{DS} * I_E * w_{px} \, \text{per per ASCE 12.10.1.1} \end{split}$$

 $F_{px-min} = 0.2*S_{DS}*I_{E}*w_{px}$ per per ASCE 12.10.1.1

Diaphragm/Story

orce Ratio
1.000
1.163
2.443

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date: 6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer: MKS	Sheet:	2
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:		

Wind Loads Criteria

Per IBC 2021 & ASCE 7-16

Wind Load Criteria

Risk Category: Basic Wind Speed: Exposure Category: Ground Elevation: Wall Ht: 3	II Table 1.5-1 97 Figure 26.5.1 C Section 26.7.3 35 ft State 31.0 ft Section 26.7.3	Roof Type: Roof Slope: Mean Roof HT: Parapet: Parapet Elevation:	Flat 0.0:12 31.0 ft Yes 32.0 ft	<=3deg 0.0 DEG UP TO 160FT UP TO 160FT
<u>Wind Topographic Factor</u> per Section 26.8 Direc	or, K _{zt} :	Upwind of Crest Downwind of Crest		
Terrain Type: Direction:	Per Local Juris Upwind of C			
L _h : H: x: z:	HT. OF HILL OR ESC. DIST. (UPWIND OR D	EEST TO HALF HT OF HILL OR ESCARP. ARP. RELATIVE TO THE UPWIND TERRAIN OWNWIND) FROM THE CREST TO THE BUILD DUND SURFACE AT BUILDING SITE	DING	
	NA EQUATION 26.8-1 1.00 MANUALLY INPUT 0.999 ASCE 26.10.1			
	0.85 ASCE 26.6			

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Wind Loads - Main Wind Force Resisting System

Per IBC 2021 & ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Wall Pressures:

L/B Ratio:

Short Dimension:	62.0 ft
Long Dimension:	80.0 ft
Transverse Wind L/B:	0.78
Longitudinal Wind L/B:	1.29

*NOTE: INTERNAL BUILDING PRESSURE CANCEL EACH OTHER OUT IN ENCLOSED BUILDING

K _h & K _z :	0.989	At Top of Wall
K _z :	0.85	0 ft to 15 ft
Kp:	1.00	At Top of Parapet

	<u>Transverse</u>
W	ind Direction
Top of Wall:	22.3 psf
0 ft to 15 ft Wall:	20.4 psf

Longitudinal Wind Direction 21.3 psf 19.4 psf

ASCE EQ 27.3-1 ASCE EQ 27.3-1

Parapet: 50.9 psf (Parapet) ASCE EQ 27.3-3

*Enveloped Leeward and Windward Pressure *All Values Ultimate (multiply x0.6 for ASD)

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date: 6/7/23	Job No:	#######
1511 Third Avenue, Suite 323			Designer: MKS	Sheet:	2
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:		

Wind Loads - Main Wind Force Resisting System (Cont.)

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

*Negative indicates pressure away from surface

*Total horizontal shear shall not be less than that determined by neglecting roof wind forces *All Values Ultimate (multiply x0.6 for ASD) GC,

Roof Overhang (PSF)

P _{ovh} : -32.9 psf	0.0 psf	
Minimum Total Projected Horizontal Pressure (PSF)	8.0 psf	ASCE 27.1.5

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date:	6/7/23	Job No: #	+######
1511 Third Avenue, Suite 323			Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Wind Loads - Components and Cladding

Per IBC 2021 & ASCE 7-16 Chapter 30.3 & 30.5 - Part 1 and Part 3 Enclosed Buildings With h<160 FT

Wind Loads - Components and Cladding (Cont.) ASCE 7-16 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

ASCE FIG 30.3-2A FLAT/GABLE ROOF $\theta \le 7^{\circ}$

ASCE FIG 30.3-2E to I HIP ROOF 7°< θ <= 45°

ASCE FIG 30.3-5B Monoslope ROOF $10^{\circ} < \theta <= 30^{\circ}$

ASCE FIG 30.3-2B to D **GABLE ROOF 7°< θ <= 45°**

ASCE FIG 30.3-5A Monoslope ROOF $3^{\circ} < \theta <= 10^{\circ}$

ASCE FIG 30.5-1 ROOF H > 60ft, $\theta \leq 7^{\circ}$

Quantum Consulting Engineers LLC	Project:	Hong & Kao	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer:	MKS	Sheet:	5
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

HONG AND KAO RESIDENCE 5425 W. MERCER WAY MERCER ISLAND, WA 98040

RELIMINARY NOT FOR CONSTRUCTION

CHESMORE BUCK a r c h i t e c t u r e r1001 ARUER SUTE 10 F12 C H 1 C E C F1 U R ESERVICK

ELEVATIONS neet No. 5.0

2222

Sheet No. Project No.

Base Shear = 1820*21.4/1000 = 38.9 K

HONG AND KAO RESIDENCE 5425 W. MERCER WAY MERCER ISLAND, WA 98040

ELEVATIONS 5.0 Sheet No. Project No. 2222

2/27/23

Structure: Hong & Kao Residence - Main House

Seismic Loads:	
Dead Load at Roof:	24 psf
Roof Snow Load:	30 psf
Seismic Snow Load:	0.0 psf
Dead Load at Floor:	24 psf
Load at Deck:	22 psf
Veneer:	38 psf

Wind Load	ds:	
Wall I	_oad (E-W):	21.4 psf
Wall	Load (N-S):	20.4 psf
Projected	Roof Load:	8.0 psf
C _{v,roof} :	0.253	
C _{v,upper} :	0.166	

0.079

C_{v,main}:

Basement Floor Shear Walls:

SW Grid		Seisn	nic Tributai	Wind	d Tributary	(sf)		
(N-S)	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
Grid 3	4101	4367	886	1398	0 0 54354 0 0 0	1279	0	0 0 26092 0 0 0
(E-W)								
Grid A Grid B	369 1007	334 915	0 255	114 225	2446 12110 0	111 301	0 0	2375 6441 0
Grid C Grid D	1934 0	1593 888	631 0	332 242	22488 5064	754 382	0 0	16136 8175
Grid E	1402	1114	0	305	14875	397	0	8496

Main Floor Shear Walls:

SW Grid		Seisn	nic Tributai	Win	d Tributary	(sf)		
(N-S)	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
					0			0
					0			0
Grid 3	3995	1416	376	704	35713	751	0	15320
Grid 4	1211	562	78	300	11769	256	0	5222
					0			0
					0			0
(E-W)								
Grid A	369	0	0	74	1937	35	0	749
Grid B	1007	0	0	177	7231	107	0	2290
					0			0
Grid C	1934	990	265	305	18579	451	0	9651
Grid D	527	495	188	151	6811	126	0	2696
Grid E	770	495	0	254	8250	325	0	6955

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101

Upper Floor Shear Walls:

_

SW Grid		Seisn	nic Tributar	ry (sf)		Win	d Tributary	(sf)
(N-S)	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
Grid 3	1332	0	0	329	11251	144	0	2938
					0			0
Grid 4	774	0	0	199	6613	99	0	2020
					0			0
					0			0
					0			0
(E-W)								
Grid C	1053	0	0	127	7615	145	0	3103
					0			0
Grid D	527	0	0	64	3815	72	0	1541
Grid E	527	0	0	64	3815	72	0	1541
					0			0
					0			0

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101

HONG AND KAO RESIDENCE 5425 W. MERCER WAY MERCER ISLAND, WA 98040

CHESMORE BUCK a r c h i t e c t u r e rronhareneme sume to made as areadon

HONG AND KA PHONG AND KA PHONG AND KA PHONG AND KA PHONG AND PHONG NO PHONO

HONG AND KAO RESIDENCE 5425 W. MERCER WAY MERCER ISLAND, WA 98040

FAX: 425-679-08 PHONE: 425-679-09

27 100TH AVENUE NE, SUITE 1 SELLEVUE, WA 98004

MAIN FLOOR 3.1 <u>Project No.</u> <u>2222</u> <u>Date:</u> <u>2/27/23</u>

FAX: 425-679-08 PHONE: 425-679-08

27 100TH AVENUE NE, SUITE -BELLEVUE, WA 98004

5425 W. MERCER WAY MERCER ISLAND, WA 98040 UPPER FLOOR

3.2 <u>Project No.</u> 2222 Date: 2/27/23

Structure: Koa and Hong Residence Floor Level: High Roof (N-S)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	3	18.75	-	-	-	-	-	-	-	-	-
SW Segment	3.7	18.75	8.75	0.47	HF #2	0.43	Interstory	8.75	10.0	14.0	15.0
SW GRID	4	32.50	-	-	-	-	-	-	-	- 1	-
	4.3	18.75	8.75	0.47	HF #2	0.43	Interstory	8.75	48.0	4.0	15.0
	4.4	13.75	8.75	0.64	HF #2	0.43	Interstory	8.75	48.0	6.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	3	11250	4140	-	-	-	-	-	-
SW Segment	3.70	11250	4140	5578			SW-4	2	(2) CS16 (3410)
SW GRID	4	6620	2020				-	-	-
	4.30	3819 2801	1165 855	9000 7013			SW-6 SW-6	2	No Strap No Strap
SW GRID							-	-	-
SW GRID							-	-	-

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: High Roof (N-S)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2 Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
3.70	600	1.00	645	221	237	645	SW-4	736	ОК	Seismic
4.30	204	1.00	219	62	67	219	SW-6	496	OK	Seismic
4.40	204	1.00	219	62	67	219	SW-6	496	OK	Seismic
							1			

Determine Shear Wall Overturning Moment Lever Ar	
	n

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Determine Snear Wall C	overturning won	lent Lever Ann			
SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
3.70	18.75	18.54	1.12%	No	
4.30	18.75	18.54	1.12%	No	
4.40	13.75	13.54	1.54%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: High Roof (N-S)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)
3.70	3675		3675	1159		1159	2789	2789
4.30	1248		1248	326		326	4500	4500
4.40	1248		1248	326		326	3506	3506

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (Ib)	Holdown	Holdown Capacity (Ib)	Status
3.70	514	-2380	514	-2380	-2380	(2) CS16 (3410)	-3410	ОК
4.30	2374	841	2374	841		No Strap	0	OK
4.40	1777	380	1777	380	380	No Strap	0	ОК

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (N-S)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	3	38.25	-	-	-	-	-	-	-	-	-
SW Segment											
	3.5	16.75	9.50	0.57	HF #2	0.43	Interstory	9.50	10.0	9.0	12.0
	3.6	21.50	8.25	0.38	HF #2	0.43	Interstory	8.25	10.0	8.0	12.0
SW GRID	4	13.50	-	-	-	-	-	-	-	-	-
	4.1	8.50	9.50	1.12	HF #2	0.43	Base	9.50	48.0	2.0	15.0
	4.2	5.00	8.25	1.65	HF #2	0.43	Base	8.25	48.0	11.5	30.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	3	35720	15320	-	-	-	-	-	-
SW Segment									
	3.50	15642	6709	3400			SW-2	2	MSTC66 (5850 max.)
	3.60	20078	8611	3838			SW-2	2	MSTC66 (5850 max.)
SW GRID	4	11770	5230				-	-	-
	4.10	7411	3293	4131			SW-3	2	HDU8 (6765DF, 5820HF)
	4.20	4359	1937	3705			SW-3	2	HDU8 (6765DF, 5820HF)
SW GRID							-	-	-
SW GRID							-	-	-

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (N-S)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2 Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
3.50	934	1.00	1004	401	431	1004	SW-2	1232	OK	Seismic
3.60	934	1.00	1004	401	431	1004	SW-2	1232	ок	Seismic
4.10	872	1.00	937	387	417	937	SW-3	960	OK	Seismic
4.20	872	1.00	937	387	417	937	SW-3	960	OK	Seismic

Determine Shear	Wall	Overturning	Moment	Lever	Arm

Determine Snear Wall C		1			Here have been
SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{oT} Lever Arm (ft)
	0.00	-0.21	100.00%		
3.50	16.75	16.54	1.26%	No	
3.60	21.50	21.29	0.98%	No	
4.10	8.50	8.01	6.11%	No	
4.20	5.00	4.51	10.85%	No	
	+				
	1				

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

	Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
9	1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (N-S)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
3.50	6210		6210	2283		2283	1700	1700
3.60	5393		5393	1983		1983	1919	1919
4.10	5798		5798	2208		2208	2066	2066
4.20	5035		5035	1918		1918	1853	1853

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (Ib)	Status
3.50	-1263	-5421	-1263	-5421	-5421	MSTC66 (5850 max.)	-5499	ОК
3.60	-831	-4502	-831	-4502	-4502	MSTC66 (5850 max.)	-5499	ОК
4.10	-969	-4839	-969	-4839	-4839	HDU8 (6765DF, 5820HF)	-5820	ок
4.20	-806	-4175	-806	-4175	-4039	HDU8 (6765DF, 5820HF)	-5820	ОК

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (N-S)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	3	95.75	-	-	-	-	-	-	-	-	-
SW Segment	3.1	14.25	10.50	0.74	HF #2	0.43	Base	10.50	10.0	4.0	12.0
	3.2	39.75	7.50	0.19	HF #2	0.43	Base	7.50	10.0	4.0	12.0
	3.3	25.75	7.50	0.29	HF #2	0.43	Base	7.50	10.0	4.0	12.0
	3.4	16.00	10.50	0.66	HF #2	0.43	Base	10.50	10.0	4.0	12.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

SW Mark		EQ (lb) Wall (ULT)	Wind (Ib) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	3	54360	26100	-	-	-	-	-	-
SW Segment	3.10	8090	3884	2180			SW-4	2	HDU5 (5645DF, 4340HF)
	3.20	22567	10835	4889			SW-4	2	HDU2 (3075DF,2215HF)
	3.30	14619	7019	3167			SW-4	2	HDU5 (5645DF, 4340HF)
	3.40	9084	4361	2448			SW-4	2	HDU5 (5645DF, 4340HF)
SW GRID							-	-	-
011 0112									
SW GRID							-	-	-
SW GRID							-	-	-

Г			
	-	. '	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (N-S)

Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
3.10	568	1.00	610	273	293	610	SW-4	736	ОК	Seismic
3.20	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
3.30	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
3.40	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
										L
										L
										
										L
										l
						NOTE CONTROL				

Determine	Shear	Wall	Overturning	Moment	l ever	Arm

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
3.10	14.25	13.77	3.52%	No	
3.20	39.75	39.27	1.23%	No	
3.30	25.75	25.27	1.92%	No	
3.40	16.00	15.52	3.12%	No	

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (N-S)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
3.10	4173		4173	1717		1717	1090	1090
3.20	2981		2981	1227		1227	2445	2445
3.30	2981		2981	1227		1227	1584	1584
3.40	4173		4173	1717		1717	1224	1224

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (Ib)	Holdown	Holdown Capacity (Ib)	Status
3.10	-1063	-3667	-1063	-3667	-3667	HDU5 (5645DF, 4340HF)	-4340	ОК
3.20	240	-1846	240	-1846		HDU2 (3075DF,2215HF)	-2215	ОК
3.30	-276	-2245	-276	-2245	-2245	HDU5 (5645DF, 4340HF)	-4340	ОК
3.40	-983	-3605	-983	-3605	-3605	HDU5 (5645DF, 4340HF)	-4340	ОК

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: High Roof (E-W)

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	С	32.58	-	-	-	-	-	-	-	-	-
SW Segment	C.6	21.33	8.75	0.41	HF #2	0.43	Interstory	8.75	48.0	2.0	15.0
	C.7	11.25	8.75	0.78	HF #2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID	D	19.75	-	-	-	-	-	-	-	-	-
	D.4	19.75	8.75	0.44	HF #2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID	E	20.00		-		-	-	-	-		-
	E.4	10.75	8.75	0.81	HF #2	0.43	Interstory	8.75	48.0	2.0	15.0
	E.5	9.25	8.75	0.95	HF #2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
								<u> </u>			

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	С	7620	6190	-	-	-	-	-	-
SW Segment	C.6	4989	4053	9599			SW-6	2	No Strap
	C.7	2631	2137	5063	1000	1000	SW-6	2	No Strap
SW GRID	D	3820	1540				-	-	-
	D.4	3820	1540	8888			SW-6	2	No Strap
SW GRID	E	3820	1540				-	-	-
	E.4	2053	828	4838	200	200	SW-6	2	No Strap
	E.5	1767	712	4163	200	200	SW-6	2	CS16 (1705)
SW GRID							-	-	-

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: High Roof (E-W)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2 Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
C.6	234	1.00	251	190	204	251	SW-6	496	ОК	Seismic
C.7	234	1.00	251	190	204	251	SW-6	496	OK	Seismic
D.4	193	1.00	208	78	84	208	SW-6	496	OK	Seismic
E.4	191	1.00	205	77	02	205	SW/ C	400	ок	Calamia
E.5	191	1.00 1.00	205 205	77	83 83	205 205	SW-6 SW-6	496 496	OK	Seismic Seismic

Determine	Shear V	Vall (Overturning	Moment	l ever	Δrm
Determine	Slieal V	van v	overturning	woment	Level	ALL

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{oT} Lever Arm (ft)
C.6	21.33	21.12	0.99%	No	
C.7	11.25	11.04	1.89%	No	
D.4	40.75	40.54	4.070/	Na	
D.4	19.75	19.54	1.07%	No	
E.4 E.5	10.75	10.54	1.98%	No	
E.3	9.25	9.04	2.30%	No	

	Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
9	1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: High Roof (E-W)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)
C.6	1433		1433	997		997	4799	4799
C.7	1433		1433	997		997	3531	3531
D.4	1185		1185	409		409	4444	4444
E.4	1170		1170	404		404	2619	2619
E.5	1170		1170	404		404	2281	2281

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
C.6	1882	795	1882	795	795	No Strap	0	ОК
C.7	1121	207	1121	207	207	No Strap	0	ОК
D.4	2257	878	2257	878	878	No Strap	0	ОК
E.4	1167	46	1167	46	46	No Strap	0	ок
E.5	965	-111	965	-111	-111	CS16 (1705)	-1705	ок

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (E-W)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark	¢.	L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Α	30.75	-	-	-	-	-	-	-	-	-
SW Segment	A.2	30.75	8.00	0.26	HF #2	0.43	Interstory	8.00	48.0	7.0	15.0
SW GRID	В	19.25	-	-	-	-	-	-	-	-	-
	B.2	19.25	11.00	0.57	HF #2	0.43	Interstory	11.00	10.0	6.0	15.0
SW GRID	С	16.58	-	-	-	-	-	-	-	- 1	-
	C.4	7.25	11.00	1.52	HF #2	0.43	Interstory	11.00	10.0	8.0	15.0
	C.5	9.33	9.50	1.02	HF #2	0.43	Base	9.50	48.0	2.0	30.0
SW GRID	D	20.75	-	-	-	-	-	-	-	- 1	-
	D.2	20.75	9.50	0.46	HF #2	0.43	Interstory	9.50	48.0	2.0	15.0

SW Mark		EQ (Ib) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Α	1940	750	-	-	-	-	-	-
SW Segment	A.2	1940	750	15037			SW-6	2	No Strap
		70.40	0000						
SW GRID	В	7240	2290				-	-	-
	B.2	7240	2290	3850			SW-6	2	(2) CS16 (3410)
SW GRID	С	18580	9650				-	-	-
	C.4 C.5	8125 10455	4220 5430	1668 4814	200	200	SW-2 SW-2	2 3	CMST12 (9215) HDU8 (3) Studs (7870DF, 6580HF)
SW GRID	D	6820	2700				-	-	-
	D.2	6820	2700	10085			SW-6	2	No Strap

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (E-W)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	1840	1472	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	2400	1920	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	3080	2464	4310	3448	46

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
A.2	63	1.00	68	24	26	68	SW-6	496	ок	Seismic
B.2	376	1.00	404	119	128	404	SW-6	496	ок	Seismic
C.4	1121	1.00	1205	582	626	1205	SW-2	1232	OK	Seismic
C.5	1121	1.00	1205	582	626	1205	SW-2	1232	ОК	Seismic
D.2	220	1.00	252	120	140	252	C) N/ C	400	OK	Colomia
<u>D.2</u>	329	1.00	353	130	140	353	SW-6	496	ок	Seismic

Determine Shear Wall Overturning Moment Lever Arm

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{oT} Lever Arm (ft)
A.2	30.75	30.54	0.68%	No	
				No	
B.2	19.25	19.04	1.09%	No	
C.4	7.25	7.04	2.96%	No	
C.5	9.33	8.72	7.05%	No	
D.2	20.75	20.54	1.01%	No	
	+				

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (E-W)

Shear Wall End Axial Load (ASD)

Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)
353		353	117		117	7518	7518
						1000	
2896		2896	785		785	1925	1925
							834
/452		7452	3318		3318	2607	2607
2186		2186	742		7/2	5042	5042
2100		2100	142		142	3042	5042
	Tension (lb)	Seismic Tension (lb) 353 353 2896 2896 2896 8629 7452	Seismic Tension (lb) Tension Above (lb) Tension Total (lb) 353 353 353 353 2896 - 2896 2896 2896 2896 8629 8629 7452 7452	Seismic Tension (lb) Tension Above (lb) Tension Total (lb) Wind tension (lb) 353 Tension Total (lb) (lb) 353 353 117 353 353 117 - - - - - - - - - 2896 2896 785 2896 2896 785 - - - 2896 8629 3841 7452 7452 3318 - - -	Seismic Tension Above (Ib)Tension Tension Total (Ib)Wind Tension (Ib)Tension Above (Ib)353353117	Seismic Tension Above (lb)Tension Tension Total (lb)Wind Tension Tension (lb)Tension Tension Above (lb)Wind Tension Total (lb)353353117Tension Above (lb)11735335311711711117<	Seismic Tension Above (lb)Tension Tension Total (lb)Tension (lb)Tension Above (lb)Wind iension Total (lb)End i Dead (lb)353353117Tension Above (lb)11775183533531171177518111117751811111775181111111111111111111128962896785785785289628967857851925111

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
A.2	4394	3137	4394	3137	3137	No Strap	0	ОК
B.2	370	-2002	370	-2002	-2002	(2) CS16 (3410)	-3410	OK
C.4	-3341	-8242	-3341	-8242	-8242	CMST12 (9215)	-9215	ок
C.5	-1753	-6242	-1753	-6242	-6242	HDU8 (3) Studs (7870DF, 6580HF	-6580	ОК
D.2	2284	155	2284	155	155	No Strap	0	ОК

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor Continued (E-W)

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Shear Wall Line Information

SW Mark	I.	L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Е	24.00	-	-	-	-	-	-	-	-	-
SW Segment	E.3	24.00	8.25	0.34	HF #2	0.43	Interstory	8.25	48.0	2.0	12.0
SW GRID		0.00	-	-	-	-	-	-	-	- 1	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	- 1	-
		0.00									

SW Mark		EQ (Ib) Wall (ULT)	Wind (Ib) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Е	8250	7000	-	-	-	-	-	-
SW Segment	E.3	8250	7000	10080			SW-6	2	No Strap
SW GRID							-	-	-
SW GRID							-	-	-
011 01.12									
SW GRID		1	1			1	-	-	-
			1						

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor Continued (E-W)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2 Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E.3	344	1.00	370	292	314	370	SW-6	496	ОК	Seismic

Determine Shear	Wall Overturning	Moment Lever Arm

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Determine Shear Wall C	verturning Mom	ent Lever Arm			
SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
E.3	24.00	23.79	0.88%	No	
	+				
	1				
	1				
-					
	1	1		1	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01	
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3	
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT			

Structure: Koa and Hong Residence

Floor Level: Low Roof / Upper Floor Continued (E-W)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
E.3	1985		1985	1444		1444	5040	5040

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (Ib)	Holdown	Holdown Capacity (Ib)	Status
E.3	1580	354	1580	354	354	No Strap	0	ОК
						l		

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (E-W)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	A	17.00	-	-	-	-	-	-	-	-	-
SW Segment	A.1	17.00	10.00	0.59	HF #2	0.43	Base	10.00	48.0	7.0	12.0
SW GRID	в	15.75	- 1	-	-	-	-	-	-	-	-
	B.1	15.75	10.50	0.67	HF #2	0.43	Base	10.25	48.0	15.0	12.0
SW GRID	с	27.00	- 1	-	-	-	-	-	-	- 1	-
	C.1	11.00	10.25	0.93	HF #2	0.43	Base	10.25	48.0	15.0	12.0
	C.2	9.00	10.25	1.14	HF #2	0.43	Base	10.25	10.0	15.0	12.0
	C.3	7.00	10.25	1.46	HF #2	0.43	Base	10.25	10.0	15.0	12.0
SW GRID	D	17.00	- 1	-	-	-	-	-	-	-	
	D.1	17.00	10.25	0.60	HF #2	0.43	Base	10.25	48.0	8.0	12.0

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Α	2450	2380	-	-	-	-	-	-
SW Segment	A.1	2450	2380	9588			SW-6	2	No HD
SW GRID	В	12110	6440				-	-	-
	B.1	12110	6440	10584			SW-3	2	HDU5 (5645DF, 4340HF)
SW GRID	С	22490	16140				-	-	-
	C.1	9163	6576	7392			SW-3	2	HDU5 (5645DF, 4340HF)
	C.2	7497	5380	2543			SW-3	2	HDU8 (6765DF, 5820HF)
	C.3	5831	4184	1978			SW-3	2	HDU8 (6765DF, 5820HF)
SW GRID	D	5070	8180				-	-	-
	D.1	5070	8180	9996			SW-6	2	No HD

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (E-W)

Shear Wall Schedule (LF	RFD)			φ _D =	0.8		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

**See SDPWS Table 4.3A Note 2 Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
A.1	144	1.00	155	140	151	155	SW-6	496	ОК	Seismic
B.1	769	1.00	827	409	440	827	SW-3	960	ок	Seismic
C.1	833	1.00	896	598	643	896	SW-3	960	ок	Seismic
C.2	833	1.00	896	598	643	896	SW-3	960	ОК	Seismic
C.3	833	1.00	896	598	643	896	SW-3	960	OK	Seismic
D.1	298	1.00	321	481	517	517	SW-6	696	ОК	Wind

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Determine Shear Wall Overturning Moment Lever Arm User Input Wall Length Calculated Override Wall SW Segment Mark % Different M_{OT} Lever Lever Arm (ft) Lever Arm (ft) Length Arm (ft) A.1 17.00 16.63 2.26% No B.1 15.75 15.27 3.17% No 4.61% 5.75% 11.00 9.00 10.52 8.51 No No C.1 C.2 6.51 C.3 7.00 7.52% No D.1 17.00 16.63 2.26% No

	Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
9	1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor (E-W)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)
A.1	1009		1009	840		840	4794	4794
B.1	5517		5517	2515		2515	5292	5292
C.1	5977		5977	3676		3676	3696	3696
C.2	5977		5977	3676		3676	1271	1271
C.3	5977		5977	3676		3676	989	989
D.1	2140		2140	2959	-2284	676	4998	4998

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (Ib)	Holdown	Holdown Capacity (lb)	Status
A.1	2036	1217	2036	1217	1217	No HD	0	ОК
B.1	661	-3060	661	-3060	-3060	HDU5 (5645DF, 4340HF)	-4340	ОК
C.1	-1459	-4261	-1459	-4261	-4261	HDU5 (5645DF, 4340HF)	-4340	ОК
C.2	-2914	-5386	-2914	-5386	-5386	HDU8 (6765DF, 5820HF)	-5820	OK
C.3	-3083	-5518	-3083	-5518	-5518	HDU8 (6765DF, 5820HF)	-5820	ОК
							_	
D.1	2323	180	2323	180	180	No HD	0	ОК

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence

Floor Level: Main Floor Continued (E-W)

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

0.97 17.25

Sds =

Shear Wall Line Information

SW Mark	I.	L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Е	20.50	-	-	-	-	-	-	-	-	-
SW Segment	E.1	6.50	10.50	1.62	HF #2	0.43	Base	10.50	48.0	2.0	12.0
	E.2	14.00	10.50	0.75	HF #2	0.43	Base	10.50	48.0	6.0	12.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Е	14880	8500	-	-	-	-	-	-
SW Segment	E.1	4718	2695	3432			SW-3	2	HDU8 (6765DF, 5820HF)
	E.2	10162	5805	8064			SW-3	2	HDU5 (5645DF, 4340HF)
SW GRID							-	-	-
SW GRID							-	-	-
ON GIGD									
SW GRID							-	-	-

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor Continued (E-W)

Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E.1	726	1.00	780	415	446	780	SW-3	960	ОК	Seismic
E.2	726	1.00	780	415	446	780	SW-3	960	OK	Seismic
-										
						NOTE CONTROL				

Determine	Shear Wall	Overturning	Moment	l ever	Arn

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Determine Shear Wall O	verturning Mom	ent Lever Arm			
SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
E.1	6.50	6.01	8.15%	No	
E.2	14.00	13.52	3.58%	No	
				1	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

Structure: Koa and Hong Residence Floor Level: Main Floor Continued (E-W)

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (Ib)	End 2 Dead (lb)
E.1	5335		5335	2612		2612	1716	1716
E.2	5335		5335	2612		2612	4032	4032

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (Ib)	Status
E.1	-1583	-4538	-1583	-4538	-4538	HDU8 (6765DF, 5820HF)	-5820	ОК
E.2	-193	-3463	-193	-3463	-3463	HDU5 (5645DF, 4340HF)	-4340	OK

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

HONG AND KAO RESIDENCE 5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

FOUNDATION DESIGN – MAIN HOUSE

Spread Footing Schedule Design

Per IBC 2018 & ACI 318-14

Typical Properties:

Allowable Soil Bearing Pressure:	2	ksf
Ultimate Factor, F (1.25 <f<1.6):< td=""><td>1.4</td><td></td></f<1.6):<>	1.4	
Minimum Thickness:	10	inches
f'c:	2.5	ksi
f _v :	40	ksi

Design:

		Colum	n Size	Allowable		Min.	Minimum	Ftg. Th.					Rebar
Foo	ting	В	Н	Soil Load	Pu	d	Ftg Th.	Input	As(ult)	As (min)	Rebar	Rebar	Spacing
		in	in	kips	kips	in	in	in	in^2	in^2	Size	Quantity	in
F-	2	6	6	8.0	11	6	10	10	0.09	0.43	#4	3	10.8
F-	2.5	6	6	12.5	18	6	10	10	0.20	0.54	#4	3	13.8
F-	3	6	6	18.0	25	6	10	12	0.28	0.78	#4	4	11.2
F-	3.5	6	6	24.5	34	6	10	12	0.47	0.91	#4	5	9.9
F-	4	6	6	32.0	45	6	10	12	0.73	1.04	#4	6	9.1
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A
F-				0.0	0	#DIV/0!	#DIV/0!		#DIV/0!	0.00		#DIV/0!	#N/A

LIC# : KW-06016450, Build:20.23.05.25		QUANTUM CO	NSULTING ENGINEERS
DESCRIPTION: Spread Footir	ng at Dec	k Stair Column	
Code References			
Calculations per ACI 318-14, IBC 20 Load Combinations Used : ASCE 7		2019, ASCE 7-16	3
General Information			
Material Properties f'c : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density φ Values Flexure	= = = =	2.50 ksi 40.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Fo Soil Passive Resistance Soil/Concrete Friction C

=

0.750

0.00180

1.0

1.0

Yes

Yes

No

No

=

=

=

=

: :

:

:

	Allowable Soil Bearing	=	2.0 ksf
	Soil Density	=	110.0 pcf
	Increase Bearing By Footing Weight	=	Yes
	Soil Passive Resistance (for Sliding)	=	350.0 pcf
	Soil/Concrete Friction Coeff.	=	0.350
	Increases based on footing Depth		
	Footing base depth below soil surface	=	1.50 ft
	Allow press. increase per foot of depth	=	ksf
	when footing base is below	=	ft
: 1			
: 1	Increases based on footing plan dimensio	n	
	Allowable pressure increase per foot of de	pth	
		=	ksf
	when max. length or width is greater than		
		=	ft

Dimensions

Analysis Settings

General Footing

Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	3.0 ft
Footing Thickness	=	12.0 in

Use ftg wt for stability, moments & shears

Use Pedestal wt for stability, mom & shear

Shear

Min Steel % Bending Reinf.

Min. Overturning Safety Factor

Min Allow % Temp Reinf.

Min. Sliding Safety Factor

Add Ftg Wt for Soil Pressure

Add Pedestal Wt for Soil Pressure

Pedestal dimensions px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis Height	=	in in
Rebar Centerline to Edge of at Bottom of footing	Concrete =	3.0 in

Z-Z Section Looking to +X

Ζ

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	4 4
Bars parallel to Z-Z Axis			
Number of Bars	=		4
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Ch	neck (ACI 1	5.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	e		n/a
# Bars required on each sid	le of zone		n/a

		D	Lr	L	S	W	Е	Н
P : Column Load OB : Overburden	=	2.10		2.80	0.0		0.0	k ksf
M-xx M-zz	=			2.560				k-ft k-ft
V-x V-z	=	0.0			0.0		0.0	k k

X-X Section Looking to +Z

.

(c) ENERCALC INC 1983-2023

. . . .

General Footing

QUANTUM CONSULTING ENGINEERS LIC# : KW-06016450, Build:20.23.05.25

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Spread Footing at Deck Stair Column

DESIGN SUMMARY

SIGN SU	IMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.6098	Soil Bearing	1.308 ksf	2.145 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	3.926	Overturning - Z-Z	2.560 k-ft	10.050 k-ft	+D+L
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2215	Z Flexure (+X)	1.558 k-ft/ft	7.033 k-ft/ft	+1.20D+1.60L
PASS	0.05226	Z Flexure (-X)	0.3675 k-ft/ft	7.033 k-ft/ft	+1.40D
PASS	0.1244	X Flexure (+Z)	0.8750 k-ft/ft	7.033 k-ft/ft	+1.20D+1.60L
PASS	0.1244	X Flexure (-Z)	0.8750 k-ft/ft	7.033 k-ft/ft	+1.20D+1.60L
PASS	0.1352	1-way Shear (+X)	10.142 psi	75.0 psi	+1.20D+1.60L
PASS	0.03025	1-way Shear (-X)	2.269 psi	75.0 psi	+1.40D
PASS	0.07202	1-way Shear (+Z)	5.401 psi	75.0 psi	+1.20D+1.60L
PASS	0.07202	1-way Shear (-Z)	5.401 psi	75.0 psi	+1.20D+1.60L
PASS	0.1350	2-way Punching	20.255 psi	150.0 psi	+1.20D+1.60L

Detailed Results

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in	ı)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	2.145	n/a	0.0	0.4333	0.4333	n/a	n/a	0.202
X-X, +D+L	2.145	n/a	0.0	0.7444	0.7444	n/a	n/a	0.347
X-X, +D+0.750L	2.145	n/a	0.0	0.6667	0.6667	n/a	n/a	0.311
X-X, +0.60D	2.145	n/a	0.0	0.260	0.260	n/a	n/a	0.121
Z-Z, D Only	2.145	0.0	n/a	n/a	n/a	0.4333	0.4333	0.202
Z-Z, +D+L	2.145	4.585	n/a	n/a	n/a	0.1812	1.308	0.610
Z-Z, +D+0.750L	2.145	3.840	n/a	n/a	n/a	0.2443	1.089	0.508
Z-Z, +0.60D	2.145	0.0	n/a	n/a	n/a	0.260	0.260	0.121

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k-ft	Infinity	OK
X-X, +D+L	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750L	None	0.0 k-ft	Infinity	OK
X-X, +0.60D	None	0.0 k-ft	Infinity	OK
Z-Z, D Only	None	0.0 k-ft	Infinity	OK
Z-Z, +D+L	2.560 k-ft	10.050 k-ft	3.926	OK
Z-Z, +D+0.750L	1.920 k-ft	9.0 k-ft	4.688	OK
Z-Z, +0.60D	None	0.0 k-ft	Infinity	OK
liding Stability			- -	All units k

Force Application Axis

Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.3675	+Z	Bottom	0.2592	AsMin	0.2667	7.033	ок
X-X, +1.40D	0.3675	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L	0.8750	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L	0.8750	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	0.6650	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	0.6650	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D	0.3150	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D	0.3150	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.2363	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.2363	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK

General Footing

LIC# : KW-06016450, Build:20.23.05.25

QUANTUM CONSULTING ENGINEERS

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Spread Footing at Deck Stair Column

Footing Flexure

Flexure Axis & Load Combinatio	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	s Actual A in^2		i*Mn ≺-ft	Status
Z-Z, +1.40D	0.3675	-X	Bottom	0.2592	AsMin	0.2667	,	7.033	ок
Z-Z, +1.40D	0.3675	+X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +1.20D+1.60L	0.1924	-X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +1.20D+1.60L	1.558	+X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +1.20D+L	0.2384	-X	Bottom	0.2592	AsMin	0.2667		7.033	OK
Z-Z, +1.20D+L	1.092	+X	Bottom	0.2592	AsMin	0.2667		7.033	OK
Z-Z, +1.20D	0.3150	-X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +1.20D	0.3150	+X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +0.90D	0.2363	-X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
Z-Z, +0.90D	0.2363	+X	Bottom	0.2592	AsMin	0.2667	,	7.033	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	@ +Z	Vu:Max I	Phi Vn	/u / Phi*Vn	Status
+1.40D	2.27 p	si	2.27 psi	2.27 psi	2.27 psi	2.27 psi	75.00 ps	si 0.03	OK
+1.20D+1.60L	0.66 p	si	10.14 psi	5.40 psi	5.40 psi	10.14 psi	75.00 ps	si 0.14	OK
+1.20D+L	1.14 p	si	7.07 psi	4.11 psi	4.11 psi	7.07 psi	75.00 ps	i 0.09	OK
+1.20D	1.94 p		1.94 psi	1.94 psi	1.94 psi	1.94 psi	75.00 ps	i 0.03	OK
+0.90D	1.46 p	si	1.46 psi	1.46 psi	1.46 psi	1.46 psi	75.00 ps	i 0.02	OK
Two-Way "Punching" Shear				·				All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		8.5	1 psi	150.00p	osi	0.05671			OK
+1.20D+1.60L			6 psi	150.00		0.135			OK
+1.20D+L			9 psi	150.00p		0.1026			OK
+1.20D			9 psi	150.00p	osi	0.04861			OK
+0.90D			7 psi	150.00p	osi	0.03646			OK

General Footing

LIC# : KW-06016450, Build:20.23.05.25

QUANTUM CONSULTING ENGINEERS

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Spread Footing at Cantilevered Column

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material Properties			
f'c : Concrete 28 day strength	2.5	50 ksi	
fy : Rebar Yield	40	.0 ksi	
Ec : Concrete Elastic Modulus	=	3,122	.0 ksi
Concrete Density	=	145	.0 pcf
$_{\odot}$ Values Flexure	=	0.9	90
Shear	=	0.7	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0 : 1
Min. Sliding Safety Factor		=	1.0:1
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & sl	hears	:	Yes
Add Pedestal Wt for Soil Pressure		÷	No
Use Pedestal wt for stability, mom &	shoor		No
Ose i edesiai wi fui stability, mom a	Shedi	•	INU

Soil Design Values Allowable Soil Bearing	=	2.0 ksf	
Soil Density	=	110.0 pcf	
Increase Bearing By Footing Weight	=	Yes	
Soil Passive Resistance (for Sliding)	=	350.0 pcf	
Soil/Concrete Friction Coeff.	=	0.350	
Increases based on footing Depth			
Footing base depth below soil surface	=	1.50 ft	
Allow press. increase per foot of depth	=	ksf	
when footing base is below	=	ft	
Increases based on footing plan dimension Allowable pressure increase per foot of c			
when max. length or width is greater that	= า	ksf	
- 0	=	ft	

Dimensions

Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	4.0 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Ζ

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	6 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	4 4
Bandwidth Distribution Ch Direction Requiring Closer	•	5.4.4.2)	
	Bars	along X-X A	xis
# Bars required within zone)	85.7	7 %
# Bars required on each sid	le of zone	14.3	8 %
A conflicted and a			

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load OB : Overburden	=	6.30		4.0	0.60		0.90	k ksf
M-xx M-zz	=							k-ft k-ft
V-x V-z	=	0.10			-0.60		4.40	k k

General Footing

QUANTUM CONSULTING ENGINEERS LIC# : KW-06016450, Build:20.23.05.25

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Spread Footing at Cantilevered Column

DESIGN SUMMARY

DESIGN SU	IMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.6410	Soil Bearing	1.375 ksf	2.145 ksf	+D+0.750L+0.750S+0.5250E about Z
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	2.795	Overturning - Z-Z	3.140 k-ft	8.775 k-ft	+0.60D+0.70E
PASS	1.098	Sliding - X-X	3.140 k	3.448 k	+0.60D+0.70E
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2192	Z Flexure (+X)	1.729 k-ft/ft	7.888 k-ft/ft	+1.20D+L+0.20S+E
PASS	0.1723	Z Flexure (-X)	1.359 k-ft/ft	7.888 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3379	X Flexure (+Z)	2.377 k-ft/ft	7.033 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3379	X Flexure (-Z)	2.377 k-ft/ft	7.033 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.1480	1-way Shear (+X)	11.10 psi	75.0 psi	+1.20D+L+0.20S+E
PASS	0.1121	1-way Shear (-X)	8.409 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.1819	1-way Shear (+Z)	13.644 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.1819	1-way Shear (-Z)	13.644 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2802	2-way Punching	42.032 psi	150.0 psi	+1.20D+1.60L+0.50S

Detailed Results Soil Bearing

Rotation Axis &		Xecc	Zecc	Actual Soil Bearing Stress @ Location				Actual / Allow
Load Combination	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	2.145	n/a	0.0	0.7250	0.7250	n/a	n/a	0.338
X-X, +D+L	2.145	n/a	0.0	1.058	1.058	n/a	n/a	0.493
X-X, +D+S	2.145	n/a	0.0	0.7750	0.7750	n/a	n/a	0.361
X-X, +D+0.750L	2.145	n/a	0.0	0.9750	0.9750	n/a	n/a	0.455
X-X, +D+0.750L+0.750S	2.145	n/a	0.0	1.013	1.013	n/a	n/a	0.472
X-X, +0.60D	2.145	n/a	0.0	0.4350	0.4350	n/a	n/a	0.203
X-X, +D+0.70E	2.145	n/a	0.0	0.7775	0.7775	n/a	n/a	0.363
X-X, +D+0.750L+0.750S+0.5250E	E 2.145	n/a	0.0	1.052	1.052	n/a	n/a	0.490
X-X, +0.60D+0.70E	2.145	n/a	0.0	0.4875	0.4875	n/a	n/a	0.227
Z-Z, D Only	2.145	0.1379	n/a	n/a	n/a	0.7085	0.7415	0.346
Z-Z, +D+L	2.145	0.09449	n/a	n/a	n/a	1.042	1.075	0.501
Z-Z, +D+S	2.145	-0.6452	n/a	n/a	n/a	0.8575	0.6925	0.400
Z-Z, +D+0.750L	2.145	0.1026	n/a	n/a	n/a	0.9585	0.9915	0.462
Z-Z, +D+0.750L+0.750S	2.145	-0.3457	n/a	n/a	n/a	1.070	0.9548	0.499
Z-Z, +0.60D	2.145	0.1379	n/a	n/a	n/a	0.4251	0.4449	0.207
Z-Z, +D+0.70E	2.145	4.090	n/a	n/a	n/a	0.2528	1.302	0.607
Z-Z, +D+0.750L+0.750S+0.5250E	2.145	1.863	n/a	n/a	n/a	0.7285	1.375	0.641
Z-Z, +0.60D+0.70E	2.145	6.441	n/a	n/a	n/a	0.0	1.007	0.470

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k-ft	Infinity	OK
X-X. +D+L	None	0.0 k-ft	Infinity	OK
X-X, +D+S	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750L	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750L+0.750S	None	0.0 k-ft	Infinity	OK
X-X, +0.60D	None	0.0 k-ft	Infinity	OK
X-X, +D+0.70E	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750L+0.750S+0.5250E	None	0.0 k-ft	Infinity	OK
X-X, +0.60D+0.70E	None	0.0 k-ft	Infinity	Ok
Z-Z, D Only	0.10 k-ft	13.050 k-ft	130.50	Ok
Z-Z, +D+L	0.10 k-ft	19.050 k-ft	190.50	Ok
Z-Z, +D+S	0.60 k-ft	14.050 k-ft	23.417	OK
Z-Z, +D+0.750L	0.10 k-ft	17.550 k-ft	175.50	OF
Z-Z, +D+0.750L+0.750S	0.450 k-ft	18.325 k-ft	40.722	OK
Z-Z, +0.60D	0.060 k-ft	7.830 k-ft	130.50	OK
Z-Z, +D+0.70E	3.180 k-ft	13.995 k-ft	4.401	OK
Z-Z, +D+0.750L+0.750S+0.5250E	2.410 k-ft	19.384 k-ft	8.043	OK
Z-Z, +0.60D+0.70E	3.140 k-ft	8.775 k-ft	2.795	Ok

General Footing LIC# : KW-06016450, Build:20.23.05.25

QUANTUM CONSULTING ENGINEERS

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

All units k

DESCRIPTION: Spread Footing at Cantilevered Column

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.10 k	4.445 k	44.450	OK
X-X, +D+L	0.10 k	5.845 k	58.450	OK
X-X, +D+S	-0.50 k	4.655 k	9.310	OK
X-X, +D+0.750L	0.10 k	5.495 k	54.950	OK
X-X, +D+0.750L+0.750S	-0.350 k	5.653 k	16.150	OK
X-X, +0.60D	0.060 k	3.227 k	53.783	OK
X-X, +D+0.70E	3.180 k	4.666 k	1.467	OK
X-X, +D+0.750L+0.750S+0.5250E	1.960 k	5.818 k	2.968	OK
X-X, +0.60D+0.70E	3.140 k	3.448 k	1.098	OK
Z-Z, D Only	0.0 k	4.095 k	No Sliding	OK
Z-Z, +D+L	0.0 k	5.495 k	No Sliding	Ok
Z-Z, +D+S	0.0 k	4.305 k	No Sliding	Ok
Z-Z, +D+0.750L	0.0 k	5.145 k	No Sliding	OK
Z-Z, +D+0.70E	0.0 k	4.316 k	No Sliding	OK
Z-Z, +D+0.750L+0.750S+0.5250E	0.0 k	5.468 k	No Sliding	OK
Z-Z, +0.60D+0.70E	0.0 k	3.098 k	No Sliding	OK
Z-Z, +D+0.750L+0.750S	0.0 k	5.303 k	No Sliding	OK
Z-Z, +0.60D	0.0 k	2.877 k	No Sliding	OK
ooting Flexure			0	

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	1.470	+Z	Bottom	0.2592	AsMin	0.2667	7.033	ок
X-X, +1.40D	1.470	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L	2.327	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L	2.327	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L+0.50S	2.377	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L+0.50S	2.377	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	1.927	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	1.927	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D	1.260	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D	1.260	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+1.60S	2.087	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+1.60S	2.087	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60S	1.420	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60S	1.420	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+0.50S	1.977	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+0.50S	1.977	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.9450	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.9450	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+0.20S+E	2.097	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L+0.20S+E	2.097	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D+E	1.095	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D+E	1.095	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
Z-Z, +1.40D	0.8094	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.40D	0.8444	+X	Bottom	0.2592	AsMin	0.30	7.888	ОК
Z-Z, +1.20D+1.60L	1.294	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+1.60L	1.324	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+1.60L+0.50S	1.359	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+1.60L+0.50S	1.314	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L	1.069	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L	1.099	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D	0.6938	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D	0.7237	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L+1.60S	1.279	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L+1.60S	1.069	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+1.60S	0.9037	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+1.60S	0.6938	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L+0.50S	1.134	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L+0.50S	1.089	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +0.90D	0.5203	-X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +0.90D	0.5428	+X	Bottom	0.2592	AsMin	0.30	7.888	OK
Z-Z, +1.20D+L+0.20S+E	0.6294	-X	Bottom	0.2592	AsMin	0.30	7.888	OK

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS

Project File: Hong Kao.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Spread Footing at Cantilevered Column

Footing Flexure

Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	s Phi*l k-f		Status
Z-Z, +1.20D+L+0.20S+E	1.729	+X	Bottom	0.2592	AsMin	0.30	7	.888	ок
Z-Z, +0.90D+E	0.05485	-X	Bottom	0.2592	AsMin	0.30	7	.888	OK
Z-Z, +0.90D+E	1.177	+X	Bottom	0.2592	AsMin	0.30	7	.888	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	@ +Z V	u:Max Ph	ni Vn Vu	/ Phi*Vn	Status
+1.40D	4.98 p	si	5.23 psi	8.44 psi	8.44 psi	8.44 psi	75.00 psi	0.11	OK
+1.20D+1.60L	7.98 p	si	8.18 psi	13.36 psi	13.36 psi	13.36 psi	75.00 psi	0.18	OK
+1.20D+1.60L+0.50S	8.41 p	si	8.10 psi	13.64 psi	13.64 psi	13.64 psi	75.00 psi	0.18	OK
+1.20D+L	6.59 p	si	6.79 psi	11.06 psi	11.06 psi	11.06 psi	75.00 psi	0.15	OK
+1.20D	4.27 p	si	4.48 psi	7.23 psi	7.23 psi	7.23 psi	75.00 psi	0.10	OK
+1.20D+L+1.60S	7.98 p	si	6.52 psi	11.98 psi	11.98 psi	11.98 psi	75.00 psi	0.16	OK
+1.20D+1.60S	5.66 p	si	4.20 psi	8.15 psi	8.15 psi	8.15 psi	75.00 psi	0.11	OK
+1.20D+L+0.50S	7.02 p	si	6.71 psi	11.35 psi	11.35 psi	11.35 psi	75.00 psi	0.15	OK
+0.90D	3.20 p	si	3.36 psi	5.43 psi	5.43 psi	5.43 psi	75.00 psi	0.07	OK
+1.20D+L+0.20S+E	3.46 p	si	11.10 psi	12.04 psi	12.04 psi	12.04 psi	75.00 psi	0.16	OK
+0.90D+E	0.10 p	si	7.70 psi	6.29 psi	6.29 psi	7.70 psi	75.00 psi	0.10	OK
Two-Way "Punching" Shear								All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		26.0	0 psi	150.00	psi	0.1733			OK
+1.20D+1.60L		41.1	5 psi	150.00	psi	0.2743			OK
+1.20D+1.60L+0.50S			3 psi	150.00	psi	0.2802			OK
+1.20D+L		34.0	7 psi	150.00	psi	0.2272			OK
+1.20D		22.2	8 psi	150.00	psi	0.1486			OK
+1.20D+L+1.60S			0 psi	150.00		0.246			OK
+1.20D+1.60S			1 psi	150.00		0.1674			OK
+1.20D+L+0.50S			6 psi	150.00		0.2331			OK
+0.90D			1 psi	150.00		0.1114			OK
+1.20D+L+0.20S+E			8 psi	150.00		0.2472			OK
+0.90D+E		19.3	7 psi	150.00	psi	0.1291			OK

Quantum Job Number: 23127.01

GRAVITY DESIGN – DADU

client

design by:

sheet no.

Roof, Roof: Joist #1a 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	436 @ 2 1/2"	1581 (3.50")	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	408 @ 3 1/2"	1794	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	901 @ 4' 6 1/2"	3634	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 4' 6 1/2"	0.289	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.062 @ 4' 6 1/2"	0.433	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Stud wall - HF	3.50"	3.50"	1.75"	164	273	436	Blocking	
2 - Stud wall - HF	3.50"	3.50"	1.75"	164	273	436	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 1" o/c	
Bottom Edge (Lu)	9' 1" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 9' 1"	24"	18.0	30.0	+5PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Roof, Roof: Joist #1b 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	604 @ 2 1/2"	1581 (3.50")	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	576 @ 3 1/2"	1794	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1776 @ 6' 3 1/2"	3634	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.131 @ 6' 3 1/2"	0.406	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.209 @ 6' 3 1/2"	0.608	Passed (L/698)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	227	378	604	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	227	378	604	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	12' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 12' 7"	24"	18.0	30.0	+5PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Roof, Roof: Joist #2 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	820 @ 2 1/2"	1581 (3.50")	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	792 @ 3 1/2"	1794	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3333 @ 8' 6 1/2"	3634	Passed (92%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.428 @ 8' 6 1/2"	0.556	Passed (L/468)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.684 @ 8' 6 1/2"	0.833	Passed (L/292)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	308	513	820	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	308	513	820	Blocking
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	17' 1" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 17' 1"	24"	18.0	30.0	+5PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Roof, Roof: Header #3 2 piece(s) 2 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	756 @ 0	1823 (1.50")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	593 @ 8 3/4"	2501	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1276 @ 3' 4 1/2"	2569	Passed (50%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.051 @ 3' 4 1/2"	0.225	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.084 @ 3' 4 1/2"	0.313	Passed (L/959)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	295	461	756	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	295	461	756	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	6' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	5.5		
1 - Uniform (PLF)	0 to 6' 9"	N/A	82.0	136.5	Linked from: Roof: Joist #1a, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Roof, Roof: Header #4 2 piece(s) 2 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	420 @ 0	1823 (1.50")	Passed (23%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	257 @ 8 3/4"	2501	Passed (10%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	394 @ 1' 10 1/2"	2569	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.005 @ 1' 10 1/2"	0.125	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.008 @ 1' 10 1/2"	0.188	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	164	256	420	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	164	256	420	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 9" o/c	
Bottom Edge (Lu)	3' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 9"	N/A	5.5		
1 - Uniform (PLF)	0 to 3' 9"	N/A	82.0	136.5	Linked from: Roof: Joist #1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 Jshin@quantumce.com	

Roof, Roof: Header #5 1 piece(s) 4 x 8 HF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	299 @ 0	2126 (1.50")	Passed (14%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	257 @ 8 3/4"	2538	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	767 @ 5' 1 1/2"	2823	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.069 @ 5' 1 1/2"	0.342	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.100 @ 5' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	94	205	299	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	94	205	299	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 3" o/c	
Bottom Edge (Lu)	10' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 10' 3"	1'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Roof, Roof Beam #6

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	223 @ 2"	3189 (2.25")	Passed (7%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	147 @ 1' 3 3/8"	8590	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	370 @ 3' 6 1/2"	15953	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 3' 6 1/2"	0.169	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 3' 6 1/2"	0.338	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	87	142	229	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	87	142	229	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 11" o/c	
Bottom Edge (Lu)	6' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 6' 11 3/4"	N/A	13.0		
1 - Uniform (PSF)	0 to 7' 1" (Front)	1'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

client

design by:

sheet no.

Upper Floor, Floor: Joist #1 1 piece(s) 9 1/2" TJI ® 210 @ 16" OC

Overall Length: 12' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	452 @ 2 1/2"	1460 (3.50")	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	431 @ 3 1/2"	1330	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1302 @ 6' 2"	3000	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.125 @ 6' 2"	0.298	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.172 @ 6' 2"	0.596	Passed (L/831)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	55	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 1/2" Gypsum ceiling.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.75"	123	329	452	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	123	329	452	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 8" o/c					
Bottom Edge (Lu)	12' 4" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 4"	16"	15.0	40.0	Residential Loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11095 @ 4"	18322 (5.50")	Passed (61%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	8861 @ 2' 5 1/2"	24990	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	64080 @ 12' 2 1/2"	83549	Passed (77%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.350 @ 12' 2 1/2"	0.594	Passed (L/815)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.612 @ 12' 2 1/2"	1.188	Passed (L/466)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• A 26.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 0.92 that was calculated using length L = 23' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column - HF	5.50"	5.50"	3.33"	4757	3012	5439	11095	None
2 - Column - HF	5.50"	5.50"	3.24"	4637	2930	5290	10802	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 5"	N/A	29.9			
1 - Uniform (PLF)	0 to 24' 1" (Top)	N/A	113.5	-	189.0	Linked from: Roof: Joist #1b, Support 1
2 - Uniform (PLF)	0 to 24' 1" (Top)	N/A	154.0	-	256.5	Linked from: Roof: Joist #2, Support 1
3 - Uniform (PLF)	0 to 24' 1" (Top)	N/A	92.3	246.8	-	Linked from: Floor: Joist #1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Joshua Shin
 Quantum

 (206) 957-3900
 jshin@quantumce.com

5/26/2023 10:21:44 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - DADU Page 12 / 14

Upper Floor, Floor: Header #3 2 piece(s) 2 x 8 HF No.2

Overall Length: 3' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	962 @ 0	1823 (1.50")	Passed (53%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	530 @ 8 3/4"	2175	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	782 @ 1' 7 1/2"	2234	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	269	693	962	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	269	693	962	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	4' 6"	15.0	40.0	Residential Loading
2 - Uniform (PLF)	0 to 3' 3"	N/A	92.3	246.8	Linked from: Floor: Joist #1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	854 @ 0	1823 (1.50")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 8 3/4"	2175	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1441 @ 3' 4 1/2"	2234	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.068 @ 3' 4 1/2"	0.225	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.095 @ 3' 4 1/2"	0.313	Passed (L/849)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	246	608	854	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	246	608	854	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	6' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 9"	4' 6"	15.0	40.0	Residential Loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Joshua Shin Quantum (206) 957-3900 jshin@quantumce.com	

Wood Stud Wall Design

Per IBC 20	018 & NDS	5 2018								
			uble Height V	Vall						
١	Vall Line:	Exterior Be	aring Wall							
Wall Conf	iguration									
	leight (ft):	21.00			Stud Spa	acing (in):	16			
:	Stud Size:	2x8		S	tud Species	& Grade:	HF #	#2		
Bot.	Plate Th.:	2x		Bot. Pl	ate Species	& Grade:	HF #	#2		
Wall Fi	nish Type:	Br	ittle	De	efl. Criteria:	L/240	=1.05 in	per IBC [·]	1604.3.1	
	Ben	ding Stress	and Stiffness	Increa	se per NDS	3.1.1.1 ?:	Yes			
										eln
Wall Load			Out of Plane	Dragg	ura Load		Mall Avia	LoodE	ocontricity	ŤÍ Ť
DL (plf):	160		Wind (psf):	20	Strength		n (in):	2.7	ccentricity	
LL (plf):	0		EQ (psf):	5	Strength		e (in):	0.8		
SL (plf):	240		Sds:	1	e		- ().		-	
Stud Prop	ortios									
b (in):	1.50	E (psi):	1300000		per NDS Ta	ahle 4A	F _b (psi):	850	ner NDS	S Table 4A
d (in):	7.25	E' (psi): E' (psi):	1300000		$= E^*C_M^*C_t$		F _c (psi):	1300	•	S Table 4A
A (in ²):	10.88	E (psi): E _{min} (psi):			per NDS Ta	ahle 44	т _с (ры).	1000	perinde	
S (in ³):	13.14	E' _{min} (psi):			$= E_{min} * C_M * ($					
I (in⁴):	47.63		470000			ot				
0		~~~~			_		4.00			
C _P :	L _e (ft): L _e /d:	20.63 34.14	stud height		Be	ending C _F : Axial C _F :		•	IDS Table 4A	
	F _{cE} (psi):	34.14 332	= 0.822*E' _{mi}	//L /d) ²	2			-	NDS Table 4A NDS 4.3.3	
	с:	0.8	per NDS 3.7			C _t :		•	IDS 4.3.4	
	0.	0.0	por 1120 0.1	. 1.0		U t.	1.00	port		
Det Diete	Ducucutic	-								
Bot. Plate	b (in):	1.50								
	~ ().	1.00								
F _{c⊥} (psi):	405	per NDS Ta	able 4A		F' _{c⊥} (psi):	506	$= F_{c\perp} C_{M}$	^r C _t *C _b		
C _b :	1.25	per NDS 3.	10.4		P _{all} (lb):	5505	= F' _c *A			

Quantum Consulting Engineers LLC	Project:	Kao Hong DADU	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer:	XX	Sheet:	1
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Wood Stud Wall Design Per IBC 2018 & NDS 2018

Structure: Garage Double Height Wall Wall Line: Exterior Bearing Wall

Check Wall Axial and Flexural Capacities for Load Cases per IBC 1605.3.1

 $f_c = P_{axial}/A$ $F'_{c} = F_{c}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{P}$

 $f_b = M_{tot}/S$ $F'_{b} = F_{b}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{r}$

P _{Axial} (lb)	Bot. Plate P _{all} Status	f _c (psi)	C _D : NDS Table 2.3.2	C _P	F' _c (psi)	C _r : NDS 4.3.9	M _{tot} (lb-ft)	f _b (psi)	F' _b (psi)	Interacti on per NDS 3.9.2	Deflection (in)	Wall Status
Load Case	D + L											
213	<= Pall: OK	20	1.00	0.23	313	1.15	16	14	1173	0.06	0.01	OK
Load Case	:D+S											
533	<= Pall: OK	49	1.15	0.20	316	1.15	39	36	1349	0.16	0.03	OK
Load Case	D + 0.75(L	+ S)										
453	<= Pall: OK	42	1.15	0.20	316	1.15	33	30	1349	0.13	0.03	OK
Load Case	D + 0.6W											
213	<= Pall: OK	20	1.60	0.15	320	1.25	866	791	2040	0.42	0.75	OK
Load Case	D + 0.75(L	+ S + 0.6W)										
453	<= Pall: OK	42	1.60	0.15	320	1.15	671	613	1877	0.39	0.58	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.7E										
243	<= Pall: OK	22	1.60	0.15	320	1.15	266	243	1877	0.14	0.32	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.75	5(L + S + 0.7E)									
517	<= Pall: OK	48	1.60	0.15	320	1.15	224	204	1877	0.15	0.26	OK

Wall: **2x8** @ 16 in. o.c. is acceptable

Quantum Job Number: 23127.01

LATERAL DESIGN – DADU

Wind Loads - Main Wind Force Resisting System

Per IBC 2021 & ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

۰.	2		
	K _z :	0.85	0 ft to 15 ft
	Kp:	0.93	At Top of Parapet

ELEVATION

ASCE EQ 27.3-1 ASCE EQ 27.3-1

Transverse <u>Wind Direction</u> Top of Wall: 20.6 psf 0 ft to 15 ft Wall: 19.7 psf Longitudinal Wind Direction 20.1 psf 19.2 psf

Parapet: 47.5 psf (Parapet) ASCE EQ 27.3-3

*Enveloped Leeward and Windward Pressure *All Values Ultimate (multiply x0.6 for ASD)

	Quantum Consulting Engineers LLC	Project:	Hong & Kao Residence	Date: 5/30/23	Job No:	#######
	1511 Third Avenue, Suite 323			Designer: JJS	Sheet:	2
$\langle \ $	Seattle, WA 98101	Client:	Chesmore Buck	Checked By:		

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

P _{ovh} : -34.4 psf	0.0 psf	
Minimum Total Projected Horizontal Pressure (PSF)	8.0 psf	ASCE 27.1.5

Quantum Consulting Engineers LLC	Project:	Hong & Kao Residence	Date:	5/30/23	Job No:	#######
1511 Third Avenue, Suite 323			Designer:	JJS	Sheet:	3
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Wind Loads - Components and Cladding Per IBC 2021 & ASCE 7-16 Chapter 30.3 & 30.5 - Part 1 and Part 3 Enclosed Buildings With h<160 FT

Wind Load CriteriRisk Category:Basic Wind Speed:9Exposure Category:Kzt:Ke:Zone DimensionsLeast Horiz. BLDG Dimension	II 7 mph C 1.00 1.00	Table 1.5-1 Figure 26.5.1 Section 26.7.3 Section 26.8 Section 26.10.1 31 ft		K _d : Roof Type: I Roof Slope: Roof Height: Wall Height: a: 3.1 ft 2a: 6.2 ft	0.85 Flat 0.0:12 21.0 ft 21.0 ft	Section 26.6 = Para	0.0 pet Height:	DEG 2.0 ft
Wall Pressures Effective Win	K _z : K _h : nd Area:		Table 26.10-1 Table 26.10-1 147 ft^2 147 ft^2	0-15 ft (PA	RT 3)			
Load Case 1 2	Top of W 4 16.7 -18.3	5 16.7 -19.9	4 5					
*Okay to in	terpolate Ultimate	e between 18 e (multiply x0		^f wall (>60' bldg)	ELEV	ATION	
	Zone 1: Zone 1':	67 ft^2		Zone 2: Zone 2e: Zone 2n: Zone 2r: Zone 2r:	968 ft^2	Zone 3: Zone 3e: Zone 3r: Zone 3':	208 ft^2	
Zoi Load Case 1	<u>ne (PSF)</u> 1'		Load Ca	ase 2	2e	2n	2r	2'
1 7.4	8.9			1 7.1	-	-	-	-
2 -28.7	-13.4			2 -29.4	-		-	
Load Case 3 1 7.1 2 -37.0 Parapet Pressures	3e - -	3r - -	3' - →	-	•	ressure away multiply x0.6 Zone 5 53.6 36.6		be
Quantum Consultin		ers LLC	Project: ong	& Kao Residenc	Date:		Job No:	23127.01
1511 Third Avenue, Seattle, WA 98101	Suite 323	-	Client: Ch	esmore Buck	Designer: Checked By:		Sheet:	4
					checked by.			

Wind Loads - Components and Cladding (Cont.)

ASCE 7-16 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

ASCE FIG 30.3-2A FLAT/GABLE ROOF θ <= 7°

ASCE FIG 30.3-2E to I HIP ROOF 7°< θ <= 45°

ASCE FIG 30.3-5B Monoslope ROOF $10^{\circ} < \theta <= 30^{\circ}$

ASCE FIG 30.3-2B to D GABLE ROOF 7°< θ <= 45°

ASCE FIG 30.3-5A Monoslope ROOF 3°< θ <= 10°

ASCE FIG 30.5-1 ROOF H > 60ft, θ <= 7°

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101

LC	Project: o	ong & Kao Residen	c Date:	5/30/23	Job No: 23127.01
			Designer:	JJS	Sheet: 5
	Client:	Chesmore Buck	Checked By:		

Seismic Base Shear for the Equivalent Lateral Force Procedure

Per IBC 2021 & ASCE 7-16 е Structure: Hong-Koa Residence - DADU Address: 5425 W. Mercer Way Mercer Island, WA 98040 47.5540 -122.2320 Latitude: Longitude: **Structure Classification** per ASCE Table 1.5-1 Risk Category : 11 Light-Framed Wood Walls Sheathed with Structural Panels Seismic Force-Resisting System: R: 6 1/2 per ASCE Table 12.2-1 W_o: 3 per ASCE Table 12.2-1 C_d: 4 per ASCE Table 12.2-1 h_n (ft): 21.00 height above the base to the highest level of the structure Site Ground Motion Reg. Structure/5 Stories Max: Sds (max) = 1.0 Per ASCE 12.8.1.3 Yes S₁ (g-sec): 0.51 S_S (g-sec): 1.45 D **Assumed Value** Site Class: per ASCE 11.4.3 ASCE 11.4.8 Exception 2 Used F_v 1.79 F_a 1.20 1.2 Min Value where SC D Assumed S_{M1} (g-sec): 0.91 S_{MS} (g-sec): 1.74 per ASCE 11.4.4 S_{D1} (g-sec): 0.61 S_{DS} (g-sec): 1.16 per ASCE 11.4.5 SDC: per ASCE 11.6 D I_E: 1.00 per ASCE Table 1.5-2 Fundamental Period per ASCE 12.8.2 Approximate Fundamental Period Period Method: All Other Structural Systems Structure Type: T_L (sec): ASCE Figures 22-14 through 22-17 6.00 0.52 T_s: Ta (sec): 0.20 Ct * hnx per ASCE Eq. 12.8-7 Tuse (sec): 0.20 ⁻ <= TL Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8 = $S_{DS}/(R/I_E)$ per ASCE Eq. 12.8-2 C_s: 0.18 = $S_{D1}/(T_a*R/I_E)$ for T <= T_L per ASCE Eq. 12.8-3 C_{s-max}: 0.47 $= S_{D1}^{*}T_{L} / (T_{a}^{2*}R/I_{E})$ for T > T_L per ASCE Eq. 12.8-4 C_{s-max}: ---C_{s-min}: per ASCE Eq. 12.8-5 0.05 C_{s-min}: --- $= 0.5S_1 / (R/I_F)$ for S₁ => 0.6g per ASCE Eq. 12.8-6 C_{s-use}: 0.18 V: 0.178 W = C_{S-use} * W per ASCE Eq. 12.8-1

Quantum Consulting Engineers LLC	Project: Ka	ao & Hong Residence	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer:	JJS	Sheet:	1
Seattle, WA 98101	Client:	Chesmore Buck	Checked By:			

Vert. Distribution of Seismic Forces for the Equiv. Lateral Force Procedure

Per IBC 2021 & ASCE 7-16

Structure: Hong-Koa Residence - DADU

Seismic Parameters

I _E :	1.00	per ASCE Table 1.5-2
S _{DS} (g-sec):	1.16	per ASCE 11.4.4
Period (Sec):	0.20	per ASCE 12.8.2.1
k:	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$\label{eq:Fx} \begin{split} F_x &= C_{vx}V \text{ per ASCE Eq. 12.8-11} \\ C_{vx} &= (w_xh_x^{-k})/(Sw_ih_i^{-k}) \text{ per ASCE Eq. 12.8-12} \end{split}$$

Level	h _x (ft)	w _x (k)	$\%$ of W_{total}	$w_x * h_x^k$	C _{vx} (%)	F _x (k)	V _x (k)
Roof	21.00	27.42	45.4%	575.8	63.6%	6.85	6.85
Upper Floor	10.00	32.99	54.6%	329.9	36.4%	3.93	10.78
	Total WT (k):	60.40	Sum:	906			

C_{s-use}: 0.178

V (k): 10.78 per ASCE 12.8.1

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

 $F_{px} = (SF_i/Sw_i) * w_{px} per ASCE Eq 12.10-1$

 $F_{px-max} = 0.4^{+}S_{DS}^{-1}I_{E}^{-1}w_{px}$ per per ASCE 12.10.1.1

 F_{px-min} = 0.2* S_{DS} * I_{E} * w_{px} per per ASCE 12.10.1.1

Diaphragm/Story

Level	w _{px} (k)	Σw _i (k)	F _x (k)	ΣF _i (k)	F _{px} (k)	Notes	Force Ratio
Roof	27.42	27.42	6.85	6.85	6.85		1.000
Upper Floor	32.99	60.40	3.93	10.78	7.65	= Fp-min	1.949

NORTH

ADU UPPER FLOOR FRAMING PLAN

1/4" = 1'-0"

 $\left(\begin{array}{c}2\\4\end{array}\right)$

ADU ROOF FRAMING PLAN

1/4" = 1'-0"

^rile: C:\quantum\Projects\23127 - Kao Hong\In\2-0.dwg Plotted: Fri, 03/31/2023 8:07 am By: Teresa Archer

 $\begin{pmatrix} 2\\ 4 \end{pmatrix}$

ADU ROOF FRAMING PLAN

1/4" = 1'-0"

	Kao Hong DADU	06-02-2023	<u>23127.01</u>
	project	date	job no.
Image: Constraint of the second sec	Chesmore Buck client	draw JJS design	sheet

Structure: Kao and Hong Residence

Floor Level: Roof

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) = 1.166 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Ν	8.00	-	-	-	-	-	-	-	-	-
SW Segment	N.1	8.00	11.00	1.38	HF #2	0.43	Interstory	11.00	10.0	4.0	15.0
SW GRID	С	20.50	-	-	-	-	-	-	-	-	-
SW Segment	C.1	16.25	11.00	0.68	HF #2	0.43	Interstory	11.00	10.0	18.0	15.0
SW Segment	C.2	4.25	11.00	2.59	HF #2	0.43	Interstory	11.00	10.0	18.0	15.0
SW GRID	S	26.00	-	-	-	-	-	-	-	-	-
SW Segment	S.1	26.00	21.00	0.81	HF #2	0.43	Base	21.00	10.0	14.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-

Shear Wall Loads and Summary

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Ν	490	482	-	-	-	-	-	-
SW Segment	N.1	490	482	1360			SW-6	2	CS16 (1705)
SW GRID	С	3430	2054				-	-	-
SW Segment	C.1	2719	1628	6175			SW-6	2	CS16 (1705)
SW Segment	C.2	711	426	1615			SW-6	2	CS16 (1705)
SW GRID	S	2940	1586						_
SW Segment	3 S.1	2940	1586	10920			- SW-6	- 2	- HDU2 (3075DF,2215HF)
ett eeginent	0.1	2010	1000	10020					
SW GRID							-	-	-
			1						

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

Structure: Kao and Hong Residence Floor Level: Roof

			EQ φ S	DPWS 4.1.4.1	WIND φ SD	PWS 4.1.4.2	
Shear Wall Schedule (LR	RFD)		φ _D =	0.5	φ _D =	0.8	
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
N.1	61	1.00	66	60	65	66	SW-6	435	ОК	Seismic
C.1	167	1.00	180	100	108	180	SW-6	435	ок	Seismic
C.2	167	0.93	194	100	116	194	SW-6	435	ОК	Seismic
S.1	113	1.00	122	61	66	122	SW-6	435	ок	Seismic
	1									

Determine Shear Wall Overturning Moment Lever Arm

Determine Shear Wall O	verturning Mom	ent Lever Arm			
SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{ot} Lever Arm (ft)
N.1	8.00	7.79	2.67%	No	
C.1	16.25	16.04	1.30%	No	
C.2	4.25	4.04	5.15%	No	
				No	
0.1		05.50	4.000/		
S.1	26.00	25.52	1.90%	No	

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Structure: Kao and Hong Residence Floor Level: Roof

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
N.1	472		472	397		397	680	680
C.1	1288		1288	661		661	3088	3088
C.2	1288		1288	661		661	808	808
S.1	1662		1662	769		769	5460	5460
0.1	1002		1002	105		103	3400	3400

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (Ib)	Holdown	Holdown Capacity (Ib)	Status
N.1	11	-175	11	-175	-175	CS16 (1705)	-1705	ОК
C.1	1191	60	1191	60	60	CS16 (1705)	-1705	ОК
C.2	-177	-936	-177	-936	-936	CS16 (1705)	-1705	ОК
S.1	2507	722	2507	722	722	HDU2 (3075DF,2215HF)	-2215	ОК

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck Archite	Checked By:	XX		

Structure: Kao and Hong Residence Floor Level: Upper Floor

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) = 1.166 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Ν	8.00	-	-	-	-	-	-	-	-	-
SW Segment	N.1	8.00	10.00	1.25	HF #2	0.43	Base	10.00	12.0	4.0	15.0
SW GRID	С	28.75	-	-	-	-	-	-	-	-	-
SW Segment	C.1	8.50	10.00	1.18	HF #2	0.43	Base	10.00	12.0	18.0	15.0
SW Segment	C.2	12.25	10.00	0.82	HF #2	0.43	Base	10.00	12.0	18.0	15.0
SW Segment	C.3	8.00	10.00	1.25	HF #2	0.43	Base	10.00	12.0	18.0	15.0
SW GRID	S	8.50	-	-	-	-	-	-	-	-	-
SW Segment	S.1	8.50	10.00	1.18	HF #2	0.43	Base	10.00	12.0	14.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
C. SIUD		0.00				-					-

Shear Wall Loads and Summary

SW Mark		EQ (lb) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (Ib) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Ν	1540	1357	-	-	-	-	-	-
SW Segment	N.1	1540	1357	1440			SW-6	2	HDU2 (3075DF,2215HF)
								-	
SW GRID	С	5390	5787				-	-	-
SW Segment	C.1	1594	1711	3315			SW-6	2	HDU4 (4565DF, 3285HF)
SW Segment	C.2	2297	2466	4778			SW-6	2	HDU2 (3075DF,2215HF)
SW Segment	C.3	1500	1610	3120			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID	S	3850	4470						
SW Segment	S.1	3850	4470	2805		5522	SW-4	2	HDU4 (4565DF, 3285HF)
									, , , , , , , , , , , , , , , , , , ,
SW GRID							-	-	_
L						l			

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

Structure: Kao and Hong Residence Floor Level: Upper Floor

FIOOI	Lever:	Upper	г

			EQ φ S	DPWS 4.1.4.1	WIND & SD	PWS 4.1.4.2	
Shear Wall Schedule (LR	RFD)		φ _D =	0.5	φ _D =	0.8	
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
N.1	193	1.00	207	170	182	207	SW-6	435	ок	Seismic
C.1	187	1.00	202	201	216	202	SW-6	435	ок	Seismic
C.2	187	1.00	202	201	216	202	SW-6	435	ок	Seismic
C.3	187	1.00	202	201	216	202	SW-6	435	OK	Seismic
S.1	453	1.00	487	526	565	487	SW-4	645	ок	Seismic
	ļ									

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{OT} Lever Arm (ft)
N.1	8.00	7.52	6.44%	No	
				No	
				No	
C.1	8.50	8.02	6.04%	No	
C.2	12.25	11.77	4.12%	No	
C.3	8.00	7.52	6.44%	No	
S.1	8.50	8.02	6.04%	No	

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Structure: Kao and Hong Residence Floor Level: Upper Floor

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
N.1	1348	472	1819	1018	397	1415	720	720
C.1	1312	1705	3017	1208	875	2083	1658	1658
C.2	1312	1288	2600	1208	661	1869	2389	2389
C.3	1312		1312	1208		1208	1560	1560
S.1	3171		3171	3155		3155	1403	6925

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
N.1	-983	-1505	-983	-1505	-1505	HDU2 (3075DF,2215HF)	-2215	ОК
C.1	-1088	-2293	-1088	-2293	-2293	HDU4 (4565DF, 3285HF)	-3285	ок
C.2	-436	-1557	-436	-1557	-1557	HDU2 (3075DF,2215HF)	-2215	OK
C.3	-272	-631	-272	-631	-631	HDU2 (3075DF,2215HF)	-2215	ок
S.1	-2314	-2558	999	-146	-2558	HDU4 (4565DF, 3285HF)	-3285	ок

	Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
	1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

Structure: Kao and Hong Residence

Floor Level: Roof

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

1.166 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Е	15.75	-	-	-	-	-	-	-	-	-
SW Segment	E.1	3.50	11.00	3.14	HF #2	0.43	Interstory	11.00	10.0	1.0	15.0
	E.2	4.00	11.00	2.75	HF #2	0.43	Interstory	11.00	10.0	1.0	15.0
	E.3	8.25	11.00	1.33	HF #2	0.43	Interstory	11.00	10.0	1.0	15.0
SW GRID	w	28.50	-	-	-	-	-	-	-	-	-
SW Segment	W.1	28.50	11.00	0.39	HF #2	0.43	Interstory	11.00	10.0	1.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

Shear Wall Loads and Summary

SW Mark		EQ (Ib) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Е	3425	1935	-	-	-	-	-	-
SW Segment	E.1	761	430	438			SW-6	2	CS16 (1705)
	E.2	870	491	500			SW-6	2	CS16 (1705)
	E.3	1794	1013	1031			SW-6	2	CS16 (1705)
SW GRID	W	3425	1935				-	-	-
SW Segment	W.1	3425	1935	3563			SW-6	2	CS16 (1705)
SW GRID							-	-	-
			-						
SW GRID									-
SW GRID							-	-	-
			1						
			1						

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

Structure: Kao and Hong Residence Floor Level: Roof

			EQ φ S	DPWS 4.1.4.1	WIND φ SD	PWS 4.1.4.2	
Shear Wall Schedule (LR	RFD)		φ _D =	0.5	φ _D =	0.8	
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E.1	217	0.86	273	123	154	273	SW-6	435	ОК	Seismic
E.2	217	0.91	258	123	146	258	SW-6	435	ок	Seismic
E.3	217	1.00	234	123	132	234	SW-6	435	ок	Seismic
W.1	120	1.00	129	68	73	129	SW-6	435	ок	Seismic
VV.1	120	1.00	129	00	13	129	344-0	435	UK	Seisinic
-										
	1									

Determine Shear Wall Overturning Moment Lever Arm

Determine Shear Wall Overturning Moment Lever Arm										
Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{ot} Lever Arm (ft)						
3.50	3.29	6.33%	No							
4.00	3.79	5.49%	No							
8.25	8.04	2.59%	No							
28.50	28.29	0.74%	No							
	Wall Length Lever Arm (ft) 3.50 4.00 8.25	Wall Length Lever Arm (ft) Calculated Lever Arm (ft) 3.50 3.29 4.00 3.79 8.25 8.04	Wall Length Lever Arm (ft) Calculated Lever Arm (ft) % Different 3.50 3.29 6.33% 4.00 3.79 5.49% 8.25 8.04 2.59%	Wall Length Lever Arm (ft)Calculated Lever Arm (ft)% DifferentOverride Wall Length3.503.296.33%No4.003.795.49%No8.258.042.59%No4.004.004.001009.258.042.59%No9.259.04100100 <t< td=""></t<>						

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Structure: Kao and Hong Residence Floor Level: Roof

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
E.1	1674		1674	811		811	219	219
E.2	1674		1674	811		811	250	250
E.3	1674		1674	811		811	516	516
W.1	925		925	448		448	1781	1781

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (Ib)	Status
E.1	-679	-1579	-679	-1579	-1579	CS16 (1705)	-1705	ОК
E.2	-661	-1565	-661	-1565	-1565	CS16 (1705)	-1705	OK
E.3	-501	-1449	-501	-1449	-1449	CS16 (1705)	-1705	ОК
W.1	621	-147	621	-147	-147	CS16 (1705)	-1705	ок

	Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
	1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck Archite	Checked By:	XX		

Structure: Kao and Hong Residence

Floor Level: Roof

Sds = Depth of Floor Framing & Plates (Clearspan) at Interstory (in) = 1.166 17.25

Shear Wall Line Information

SW Mark		L _{sw} (ft)	Wall Pier h _{wp} (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	h _{sw} (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID	Е	7.50	-	-	-	-	-	-	-	-	-
SW Segment	E.1	3.50	10.00	2.86	HF #2	0.43	Base	10.00	10.0	1.0	15.0
SW Segment	E.2	4.00	10.00	2.50	HF #2	0.43	Base	10.00	10.0	1.0	15.0
SW GRID	w	28.50	-	-	-	-	-	-	-	-	-
SW Segment	W.1	28.50	10.00	0.35	HF #2	0.43	Base	10.00	10.0	1.0	15.0
SW GRID		0.00	-	-	-	-	-	-	-	-	-
SW GRID		0.00	-	-	-	-	-	-	-	-	-

Shear Wall Loads and Summary

SW Mark		EQ (Ib) Wall (ULT)	Wind (lb) Wall (ULT)	Wall DL (lb)	Wall DL (lb) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. # of End Studs	Holdown
SW GRID	Е	5390	5452	-	-	-	-	-	-
SW Segment	E.1	2515	2544	403			SW-2	4	HDU11 (4) Studs (9335DF, 8030HF)
SW Segment	E.2	2875	2908	460			SW-2	4	HDU11 (4) Studs (9335DF, 8030HF)
SW GRID	W	5390	5452				-	-	-
SW Segment	W.1	5390	5452	3278			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID							-	-	-
				-					
SW GRID			1				-	-	-
			1						

Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

Structure: Kao and Hong Residence Floor Level: Roof

			EQ φ S	DPWS 4.1.4.1	WIND φ SD	PWS 4.1.4.2	
Shear Wall Schedule (LR	RFD)		φ _D =	0.5	φ _D =	0.8	
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E.1	719	0.89	865	727	875	865	SW-2	1077.5	ОК	Seismic
E.2	719	0.94	824	727	834	824	SW-2	1077.5	OK	Seismic
W.1	189	1.00	203	191	206	203	SW-6	435	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	% Different	Override Wall Length	User Input M _{ot} Lever Arm (ft)
E.1	3.50	2.76	26.79%	No	
E.2	4.00	3.26	22.68%	No	
				No	
W.1	28.50	28.02	1.73%	No	
-					

	Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
	1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
\mathbf{K}	Seattle, WA 98101	Client: Chesmore Buck Archited	Checked By:	XX		

<u>*NOTE:</u> CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

Structure: Kao and Hong Residence Floor Level: Roof

Shear Wall End Axial Load (ASD)

SW Segment Mark	Seismic Tension (Ib)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (Ib)	End 1 Dead (Ib)	End 2 Dead (Ib)
E.1	5031	1674	6705	4362	811	5172	201	201
E.2	5031	1674	6705	4362	811	5172	230	230
W.1	1324	925	2249	1148	448	1596	1639	1639

Determine Required Holdown (ASD)

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
E.1	-5052	-6617	-5052	-6617	-6617	HDU11 (4) Studs (9335DF, 8030H	-8030	ОК
E.2	-5034	-6605	-5034	-6605	-6605	HDU11 (4) Studs (9335DF, 8030H	-8030	OK
W.1	-613	-1533	-613	-1533	-1533	HDU2 (3075DF,2215HF)	-2215	ОК

	Quantum Consulting Engineers LLC	Project: Hong and Kao Residenc	Date:	5/30/23	Job No:	23127.01
	1511 Third Avenue, Suite 323		Designer:	JJS	Sheet:	3
	Seattle, WA 98101	Client: Chesmore Buck Archite	Checked By:	XX		

HONG AND KAO RESIDENCE 5425 W. Mercer Way Mercer Island, WA 98040

Quantum Job Number: 23127.01

FOUNDATION DESIGN – DADU

Base Shear: 29.81k		
Passive Pressure: 35	0pcf	
Assume 18" Depth (F	rost Depth)	
	of house*depth2* Passive	
pressure/2		350pcf
N-S direction=(35.5ft*	3 wall lines)*1.5ft ² 350pcf/2	
=41.9 kips		
E-W direction=(38ft*2	wall lines)*1.5ft2350pcf/2	10"
=29.9 kips		18"
1 Top of Plan:		
1. Top of Plan: 4'-6" Trib	2.Under Upper Beam	
Ext Wall+ Veneer	14'-3" Trib	
	D+L= 1623+ 713 plf	
Roof+Res+Parking	2335 plf	
D+L=1260 + 540 plf	3dia Pile: 12k cap	525 psf/ft
1800 plf	5' spacing	Loval Looding
3dia Pile: 12k cap		Level Loading Roof 18/30
6'-6" spacing		
		Upper Floor 15/40
		Parking 90/50
3. Below Stairs	4. Under Util Room	GB 340/0
10'-0" Trib	14'-3" Trib	Exterior Wall 190/0
Int Wall	Int Wall	Veneer 722/0
Roof Res Parking	Roof Res Parking	
D+L= 1760 + 1200 pl	f D+L= 2283 +1710 plf	
2960 plf	3993 plf	
3dia Pile: 12k cap	3dia Pile: 12k cap	3.7
4' spacing	3' spacing	
		4. 2.
5. Bottom of Plan	6. 2'-0" Trib	
8'-6" Trib	Ext Wall	GARAGE
Ext Wall	Roof Res Parking	
Roof Res Parking	D+L= 776 + 240 plf	
D+L= 1576 +	1016 plf	5.
1020	3dia Pile: 12k cap	→ → →
2596 plf	11'-9" spacing	
3dia Pile: 12k cap	si - 3 spacing	
4'-6" spacing		

	Kao Hong DADU		23127.01
	project	date	job no.
ENUE		drawn by:	
3101 900	CHESMORE BUCK	· · · · ·	

design by:

sheet no.

Vert. Distribution of Seismic Forces for the Equiv. Lateral Force Procedure

Per IBC 2021 & ASCE 7-16

Structure: Hong-Koa Residence - DADU

Seismic Parameters

I _E :	1.00	per ASCE Table 1.5-2
S _{DS} (g-sec):	1.16	per ASCE 11.4.4
Period (Sec):	0.20	per ASCE 12.8.2.1
k:	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

 $\label{eq:Fx} \begin{array}{l} \mathsf{F}_x = \ \mathsf{C}_{vx} \mathsf{V} \ \text{per} \ \mathsf{ASCE} \ \mathsf{Eq}. \ 12.8\text{-}11 \\ \\ \mathsf{C}_{vx} = \ (\mathsf{w}_x \mathsf{h}_x^{\ \mathsf{k}}) / (\mathsf{Sw}_i \mathsf{h}_i^{\ \mathsf{k}}) \ \text{per} \ \mathsf{ASCE} \ \mathsf{Eq}. \ 12.8\text{-}12 \end{array}$

Level	h _x (ft)	w _x (k)	$\%$ of W_{total}	$w_x * h_x^k$	C _{vx} (%)	F _x (k)	V _x (k)
Roof	22.50	27.42	16.4%	616.9	53.4%	15.91	15.91
Upper Floor	11.50	32.99	19.7%	379.4	32.8%	9.78	25.69
Foundation	1.50	106.65	63.8%	160.0	13.8%	4.12	29.81
	Total WT (k):	167.05	Sum:	1156			

VI (K): 167.05 C_{s-use}: 0.178

V (k): 29.81 per ASCE 12.8.1

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

 $F_{px} = (SF_i/Sw_i) * w_{px} per ASCE Eq 12.10-1$

 $F_{px-max} = 0.4*S_{DS}*I_{E}*w_{px}$ per per ASCE 12.10.1.1

 F_{px-min} = 0.2* S_{DS} * I_{E} * w_{px} per per ASCE 12.10.1.1

Diaphragm/Story Force Ratio

Level	w _{px} (k)	Σw _i (k)	F _x (k)	ΣF _i (k)	F _{px} (k)	Notes	Force Ra
Roof	27.42	27.42	15.91	15.91	12.72	= Fp-max	0.800
Upper Floor	32.99	60.40	9.78	25.69	14.03		1.434
Foundation	106.65	167.05	4.12	29.81	24.74	= Fp-min	5.998

	Quantum Consulting Engineers LLC	Project: K	ao & Hong Residence	Date: 5/	/30/23 Job No:	23127.01
	1511 Third Avenue, Suite 323			Designer: JJS	Sheet:	2
\mathbf{K}	Seattle, WA 98101	Client:	Chesmore Buck	Checked By:		

One-Way Slab Design - Simple Span Per IBC 2021 & ACI 318-19

Identification:	15' Span		
<u>Loads:</u>	Superimposed DL: 5 LL: 50 25	psf psf % LL sustained	Load Factors: DL: 1.2 ACI 5.3.1 LL: 1.6 ACI 5.3.1 Average Factor= 1.34
<u>Geometry:</u>	Clear span (L): 15 Conc. Cover: 2 Thickness: 7 Minimum Thickness: 9.0	ft. in. ACI 20.6.1.3 in. in. ACI 7.3.1.1	Check Deflection
Strength & Reinfo	rcing f	' _c = 4 ksi	f _y = <u>60</u> ksi
0	erse Reinforcing .15 in ² / ft. ACI 24.4.3 @ 16 in o.c.		Reinforcing (Midspan) #5 @ 12 in o.c. #5 @ 12 in o.c.
<u>Design:</u>	b = 12 in. d = 4.69 in. $w_u = 191$ psf	$A_s \max = 1.02 \text{ in}^2/$	$ \begin{array}{ll} \rho = & 0.0055 \\ ft. & OK \ ACI \ 9.6.1.2 \\ ft. & OK \ (Tension \ Ctrl'd \ Section) \\ ft. & \rho' = & 0.0055 \\ \end{array} $
Check Shear	V _u @ 'd' = 1.36 kips / ft.	ACI 7 4 3 3	
	$\phi_{u} = 0^{-1.36} \text{ kips / ft.}$ $\phi_{Vc} = 5.34 \text{ kips / ft.}$ $\phi_{Vc} = 5.64 \text{ kips / ft.}$	ACI 7.4.3.2 OK ACI 22.5.5.1 (OK ACI 22.5.5.1 (
Check Flexure	$M_u = 64.5 \text{ k-in. / ft.}$ $\phi M_n = 74.7 \text{ k-in. / ft.}$	ок	
Check Deflection	$E_{conc} = 3605 \text{ ksi} \qquad \text{ACI } 19.2.2$ $I_g = 343 \text{ in}^4$ $I_{cr} = 37 \text{ in}^4$ $I_e = 313 \text{ in}^4 \qquad \text{ACI } 23.2.3$	$f_r = 47$ $M_{cr} = 46$	74 psi ACI 19.2.3.1 6.5 k-in. / ft. ACI 24.2.3.5b
	Time Factor (ξ) = 2.0 Deflection Factor = 1.57	ACI 24.2.4.1.3 ACI 24.2.4.1.1	
	LL Deflection = 0 DL Deflection = 0	.05 in. L/3570 Tota .09 in. L/1930	al LL (Regardless of % Sustained) +Sust. LL)xDefl. Factor + Remaining LL +DL

Quantum Consulting Engineers LLC	Project:	Kao Hong Residence	Date:	5/30/23	Job No:	23127.01
1511 Third Avenue, Suite 323			Designer:	JJS	Sheet:	2
Seattle, WA 98101		t: Chesmore Buck	Checked By:			
Nao noi	19 ACI 310-19	Conc Slab Design one way.xls				

Concrete Beam Design - Simple Span Per IBC 2021 & ACI 318-19

Identification:		Grade Beam		
<u>Loads:</u> Superin	LL: 50 p	LINE osf 0 osf 0 6 LL sustained	plf 0.07 klf plf 0.68 klf	<i>Load Factors:</i> DL: 1.2 ACI 5.3.1 LL: 1.6 ACI 5.3.1 Average Factor= 1.47
<u>Geometry:</u>	Tributary (B): Clear span (L): Conc. Cover Width (b): Thickness (h): min. h:	13.5 ft. 11 ft. 1.5 in. 18 in. 14 in. 8.3	ACI 20.6.1.3 ACI 9.3.1.1	ок
Strength & Reinforc	ing f'c =	2.5 ksi	fy = <u>60</u> ksi	
Stirru St		E Spacing b/w ו.	Longitudinal Reinforci Bottom bar: (3) V Bot. Bars 6.19 in. Top bar: (2)	ng (Midspan) #5 OK #4
<u>Design:</u>	d = 11.81 ir w _u = 1.48 k		$\begin{array}{rl} A_{s} = & 0.93 \ \text{in}^{2} \\ As \ \text{min} = & 0.71 \ \text{in}^{2} \\ As \ \text{max} = & 2.4003 \ \text{in}^{2} \\ As' = & 0.40 \ \text{in}^{2} \end{array}$	OK OK Tension Controlled
¢Vs∣	Vu @ 'd' = 6.7 k	ips ips ips n ² @ 12 in.	ACI 7.4.3.2 ACI 22.5.5.1 (Simple) ACI 22.5.5.1 (Detailed oc ACI 22.5.10.5.3	
Check Flexure	Mu = 268 I ∳Mn = 557 I			
Check Serviceabilit	-	ip-in. OK for t	ank ACI 318-95 I	EQ 10-5
١ _c	$g = 4116 \text{ in}^4$ $r = 889 \text{ in}^4$ $e = 6589 \text{ in}^4$ A	CI 19.2.2.1 CI 23.2.3.5a 2.0 ACI 24.2 1.83 ACI 24.2	Mcr = 22 Ma/Mcr = 0.8	75 psi ACI 19.2.3.1
	LL Deflection = DL Deflection = Total Deflection =	0.02 in. 0.01 in. 0.05 in.	L/14399	al LL (Regardless of % Sustained) .+Sust. LL)xDefl. Factor + Remaining LL +DI

Quantum Consulting Engineers LLC	Project: Kao Hong Residence	_	Date:	6/1/23	Job No:	23127.01
1511 Third Avenue, Suite 323		_	Designer:	JJS	Sheet:	
Seattle, WA 98101	Client: Chesmore Buck	Cł	hecked By:			