STRUCTURAL CALCULATIONS

(Permit Submittal)

HONG AND KAO RESIDENCE

5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

Prepared for:
CHESMORE BUCK ARCHITECTURE
27 100ath Avenue NE, Suite 100
Bellevue, WA 98004

Prepared by:

QUANTUM CONSULTING ENGINEERS
1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900

1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

HONG AND KAO RESIDENCE

5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

TABLE OF CONTENTS
DESIGN CRITERIA 3
GRAVITY DESIGN - MAIN HOUSE 10
LATERAL DESIGN - MAIN HOUSE 134
FOUNDATION DESIGN - MAIN HOUSE 173
GRAVITY DESIGN - DADU 182
LATERAL DESIGN - DADU 198
FOUNDATION DESIGN - DADU. 221

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

DESIGN CRITERIA

Geotechnical Criteria

Allowable Bearing Pressure	2000 PSF
Minimum Footing Width	Continuous: 16" min., Isolated: 24" min.
Frost Depth	$18 "$ min.
Soils Consultant	GEO Group Northwest, Inc.
Soils Report Number	\#G-5881
Soils Report Date	May 20, 2023
Active Soil Pressure (Restrained/Unrestrained)	50 PCF / 35 PCF
Seismic Surcharge Pressure (Restrained/Unrestrained)	8 H PSF / 6H PSF
Passive Soil Pressure	350 PCF
Coefficient of Friction	0.35

Materials Criteria

Concrete (28 Day Strength):

Foundation/Slab on Grade
Basement Walls

Reinforcing Steel:
Grade 60 (\#5 bar and larger)
Grade 40 (\#4 bar)

Structural Steel:

Wide-Flange Sections: A-992 Fy=50,000 PSI
Miscellaneous Sections: A-36
Tube Sections: A-500
Pipe Sections: A-53
Welding

F'c= 2,500 PSI
F'c= 3,000 PSI

Fy= 60,000 PSI
$\mathrm{Fy}=40,000 \mathrm{PSI}$

Fy= 36,000 PSI
Fy= 46,000 PSI
Fy= 35,000 PSI
Fy= 70,000 PSI

Wood Framing:

$2 x, 3 x \& 4 x$ Framing Members HF\#2 or DF\#2
$6 x$ Framing Members
Glulam Beams
LSL Members - Beams \& Headers
LVL Members - Beams \& Headers
Wood Sheathing

DF\#1
24F-V4 (V8 @ Cont. and Cant. Members)
1.55 E LSL
1.9 E LVL

APA RATED

Snow Load	Roof	25 psf	+5 psf Rain on Snow
Live Load	Residential	40 psf	
	Residential exterior decks / balconies	60 psf	

Assembly Loads

Typical Roof Loads		Comments
Standard Roofing	4.0 psf	
1/2" Ply. Sheathing	1.5 psf	0.0 psf for seismic
Joists @ 24" o.c.	2.1 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
PV Allowance	5.0 psf	
Misc. + Sprinklers	3.1 psf	
Total:	20.0 psf	SL=30 psf

East Low Roof Loads	
Standard Roofing	4.0 psf
1/2" Ply. Sheathing	1.5 psf
Joists @ 24" o.c.	2.1 psf
R38 Insulation	1.0 psf
5/8" GWB	2.8 psf
Lights, ducts	0.5 psf
2" gravel	18.0 psf
Misc. + Sprinklers	3.1 psf
Total:	
$\mathbf{3 3 . 0} \mathbf{~ p s f}$	SL=30 psf

Typical Deck Loads		Comments
Porcelain Ped. Pavers	9.0 psf	
Membrane Roofing	2.2 psf	
3/4" Ply. Sheathing	2.3 psf	
Joists @ 16" o.c.	2.5 psf	
R38 Insulation	1.0 psf	
5/8" GWB	2.8 psf	
Lights, ducts	0.5 psf	
Miscellaneous	1.7 psf	
Total:	22.0 psf	LL=60 psf

Exterior Wood Stud Wall	
Siding	2.3 psf
$1 / 2 "$ Plywood	1.5 psf
2×6 studs @ 16 " o.c.	1.7 psf
Insulation	0.5 psf
$1 / 2 "$ GWB	2.2 psf
Mech./Elec.	0.5 psf
Misc.	1.3 psf
Total:	

Exterior Wall with Veneer	
Exterior Finish	2.2 psf
1/2" Plywood	1.5 psf
Studs @ 16 " o.c.	1.7 psf
Insulation	0.5 psf
1/2" GWB	2.2 psf
Mech./Elec.	0.5 psf
Misc.	1.4 psf
Veneer	38.0 psf
Total:	48.0 psf

Interior Wall Framing	
5/8" GWB	2.8 psf
2x4 @ 16" o.c.	0.9 psf
5/8" GWB	2.8 psf
Mech./Elec.	0.5 psf
Misc.	1.0 psf
Total:	8.0 psf

Deflection Criteria

Roof	Walls	L/120	*flexible finishes	Floor	
Live Load: L/240			L/240	"brittle finish	Live Load: L/480
Total Load: L/240	3/4" max.	L/240	"supporting glass	Total Load: $\mathbf{L} / \mathbf{2 4 0}$ 3/4" max.	

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101	Project: Hong \& Kao Residence	Date: $6 / 7 / 23$ Job No: 23127.01		
		Client: Chesmore Buck	Designer:	JJS

submit additional calculations and supporting topographic documentation (to verify the values utilized in their wind load determination).

Please note - The Kzt values indicated on this map are approximations based upon periodic calculations of representative samplings around Mercer Island. These values are intended for City of Mercer Island's plan review purposes only.

WIND EXPOSURE CATEGORIES

WIND SPEED-UP (TOPOGRAPHIC EFFECT) - K Z t Factor
K_{z} t Factor

GENERAL NOTES FOR WIND EXPOSURE AND WIND SPEED.UP MAP

his map is the Wind Exposure Category and Wind Speed-up (Topographic Effects) Map for ite City of Mercer island. This map shows the minimum wind exposure category and the minimu wind speed-up, "Kz" factor, which will be accepted without site specific documentation an
ther wind speed phenomena may occur on Mercer island that is not spectically inderited his map. It is the responsibility of the Owner (or their Design Professional) to review site specific project and location

This map is for the sole use of the staff of the City of Mercer Islands Development Services Group (DSG) for the purposes of permit application evaluation. This map provides DSG staff a general assessment of Wrd Exposure Category and Wind Speed-up (Topographic Effects). A1 epresented on this map. It is the responsibility of individual property owners and map users to evaluate risk associated with their proposed development. No site-specific assessment of risk is mplied or themise indealed by Ge Chy onercer sland whithis map.
Information about data used for the map, references, and data limitation are all described the ssociated "Read Me" document. The digital version of this map is accompanied by a meta data econtaining pertinent information about map construction. This data map is available on the City of Mercer Island website
The City of Mercer Island is using guidance provided within ICC Section 1609 \& ASCE 7 -0. Chapter 6 regarding definitions used when creating this map.

DEFINITIONS:
K_{t} f factor:
The topographic effect of wind speed-up at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography, located in any exposure
oategory, that meet all of the conditions noted in ASCE 7 -05 Minimum Design Loads for Buildings and Other Structures, Section 6.5.7.
Exposure B:
The wind exposure category that applies where the site in question is located a equal to 30 feet per IBC 2006 section 1609.4.3.
Exposure C. The wind exposure category that applies where the site in question is located within 1500 feet from the shore line per IBC 2006 section 1609.4.
Wind Speed: Ninimum 85 mph 3 -second gust per IRC Figure R301 2(4)

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback
(i) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why

ATC Hazards by Location

Search Information

Address:	5425 W Mercer Way, Mercer Island, WA 98040, USA
Coordinates:	$47.55428420000001,-122.2323217$
Elevation:	35 ft
Timestamp:	$2023-04-03 T 18: 49: 04.254 Z$
Hazard Type:	Wind

ASCE 7-16

MRI 10-Year	67 mph	MRI 10-Year	72 mph
MRI $25-Y$ ear	73 mph	MRI $25-Y$ ear	79 mph
MRI 50-Year	78 mph	MRI 50-Year	85 mph
MRI 100-Year	83 mph	MRI 100-Year	91 mph
Risk Category I	92 mph	Risk Category I	100 mph
Risk Category II	97 mph	Risk Category II	110 mph
Risk Category III	104 mph	Risk Category IIII	115 mph

ASCE 7-05

ASCE 7-05 Wind Speed
85 mph

Risk Category IV .-..............................-- 108 mph

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.
Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.
(1) The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why,

ATC Hazards by Location

Search Information

Address:	5425 W Mercer Way, Mercer Island, WA 98040, USA
Coordinates:	$47.55428420000001,-122.2323217$
Elevation:	35 ft
Timestamp:	$2023-05-24 T 19: 00: 24.918 \mathrm{Z}$
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D

Site Class.

Basic Parameters

Name	Value	Description
S_{S}	1.457	$\mathrm{MCE}_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.506	$\mathrm{MCE}_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.457	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	* null	Site-modified spectral acceleration value
S_{DS}	0.972	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	*null	Numeric seismic design value at 1.0 s SA

* See Section 11.4.8

-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1	Site amplification factor at 0.2 s
F_{v}	* null	Site amplification factor at 1.0s
CR_{S}	0.902	Coefficient of risk (0.2s)
CR_{1}	0.898	Coefficient of risk (1.0s)
PGA	0.624	MCE ${ }_{\text {G }}$ peak ground acceleration
$\mathrm{F}_{\text {PGA }}$	1.1	Site amplification factor at PGA
PGA_{M}	0.687	Site modified peak ground acceleration

T_{L}	6	Long-period transition period (s)
SsRT	1.457	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.616	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	4.124	Factored deterministic acceleration value (0.2s)
S1RT	0.506	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.563	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
S1D	1.606	Factored deterministic acceleration value (1.0s)
PGAd	1.384	Factored deterministic acceleration value (PGA)
* See Section 11.4.8		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

GRAVITY DESIGN - MAIN HOUSE

FORTEWEB
J OB SUMMARY REPORT
23127 Hong and Kao Residence - Main House

Upper Roof			
Member Name	Results	Current Solution	Comments
RJ 1 - Master Closet Roof Joist, 11'-0"	Passed	1 piece(s) 2×10 HF No. 2 @ 16" OC	
RJ 2 - Master Closet Roof Joist, 13'-0"	Passed	1 piece(s) $2 \times 10 \mathrm{HF} \mathrm{No}$.2 @ 16" OC	
RJ3 - Existing 2x10, 9'-6"	Passed	1 piece(s) 2×10 HF No. 2 @ 16" OC	
RJ 4 - Existing 2x12, 17'-6"	Passed	1 piece(s) 2×12 HF No. 2 @ 16" OC	
RJ 5 - Master Bed Roof J oist , 7'6"	Passed	1 piece(s) 2×12 HF No. 2 @ 24" OC	
RB1 - Bed 4 Flush Beam, 10'-6"	Passed	1 piece(s) $51 / 8$ " \times 9" 24F-V8 DF Glulam	
RB2 - Bath 4 Header, 5'-0"	Passed	2 piece(s) 2×10 HF No. 2	
RB3 - Exercise Room Beam, 11'8"	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 9^{\prime \prime} 24 F-V 4$ DF Glulam	
RB4 - Master Closet Beam, Two Span	Passed	1 piece(s) $51 / 8$ " x 9" $24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
RB5 - Existing Glulam, 17'-0"	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 12^{\prime \prime} 24 F-V 4$ DF Glulam	
RB8 - South Master Roof Beam, 3'-3" Cantilever	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 12$ " $24 \mathrm{~F}-\mathrm{V} 8$ DF Glulam	
RB9 - North Master Roof Beam, 3'-3" Cantilever	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 12$ " $24 \mathrm{~F}-\mathrm{V} 8$ DF Glulam	
RB10 - Exercise Room Header, $5^{\prime}-0{ }^{\prime \prime}$	Passed	2 piece(s) $2 \times 8 \mathrm{HF}$ No. 2	
RB11 - Bedroom Header, 5'-3'	Passed	1 piece(s) $4 \times 10 \mathrm{HF}$ No. 2	
Lower Roof			
Member Name	Results	Current Solution	Comments
RJ 6 - Existing Powder Roof Joist, 9'-8"	Passed	1 piece(s) 2×8 HF No. 2 @ 16" OC	
RJ7 - Existing Office Roof Joist, $14^{\prime}-3 "$	Passed	1 piece(s) 2×10 HF No. 2 @ 16" OC	
RJ 8 - Living Room Roof Joist, $17^{\prime}-0$	Passed	1 piece(s) 11 7/8" TJI® 110 @ 24" OC	
RJ9 - Entry Roof J oist, 11'-4"	Passed	1 piece(s) $2 \times 10 \mathrm{HF}$ No. 2 @ 24" OC	
RB12 - Living Room Roof Beam, Grid B	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 21$ " 24F-V4 DF Glulam	
RB13 - Existing Entry Header, \|2'-0"	Passed	3 piece(s) 2×10 DF No. 2	
RB14 - Existing Entry Header, 8'9"	Passed	3 piece(s) 2×10 DF No. 2	
RB15 - Living Room Flush Beam, Grid 3	Passed	1 piece(s) $31 / 8{ }^{\prime \prime} \times 12$ " $24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
RB16 - Office Flush Header, Grid A	Passed	1 piece(s) $4 \times 10 \mathrm{HF}$ No. 2	

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor			
Member Name	Results	Current Solution	Comments
UJ 1 - Solarium Floor J oist, 11'-9"	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	Right cantilever exceeds the maximum braced cantilever length of 4'.
UJ 2 - Exercise Floor J oist, 12'-6"	Passed	1 piece(s) $117 / 8^{\prime \prime}$ TJI® 110 @ 16" OC	
UJ 3 - Shower Floor J oist, 6'-0"	Passed	1 piece(s) 2×8 HF No. 2 @ 16" OC	
UJ 4 - Landing Floor J oist, 9'-6"	Passed	1 piece(s) 2×12 HF No. 2 @ 16" OC	
UJ 5 - Master Floor Joist, 18'-0"	Passed	1 piece(s) 2×12 HF No. 2 @ 12" OC	
UJ 6 - Deck Joist, 12'-6"	Passed	1 piece(s) 4×8 DF No. 1 @ 16" OC	
UJ 7 - Deck Joist, 6'-0"	Passed	1 piece(s) 4×8 DF No.1 @ 16" OC	
UJ 8 - Landing Floor J oist, 7'-0"	Passed	1 piece(s) 2×6 HF No. 2 @ 16" OC	
UB1 - Garage Door Header, 9'-6"	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
UB3 - Flush Beam at Shower, \|11'-9"	Passed	1 piece(s) $13 / 4 " \times 11$ 7/8" 1.55 E TimberStrand® LSL	
UB4 - Garage Window Header, 9'-6"	Passed	1 piece(s) $51 / 8$ " x 9" $24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
UB5 - Beam over Pantry, 15'-0"	Passed	1 piece(s) $31 / 8{ }^{\prime \prime} \times 18{ }^{\text {" } 24 F-V 4 ~ D F ~ G l u l a m ~}$	
UB7 - Flush Header at Master Window, 17'-0"	Passed	3 piece(s) 1 3/4" $\times 11$ 1/4" 2.0E Microllam® LVL	
UB12 - Deck Edge Beam, Grid D	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 111 / 4^{\prime \prime} 2.0 \mathrm{E}$ Microllam ${ }^{\text {® }}$ LVL	
UB13 - Flush Beam over Dining, \|19'-9"	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 221 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
UB14 - Utility Room Header, 5'-6"	Passed	2 piece(s) $2 \times 10 \mathrm{HF}$ No. 2	
UB15 - Flush Beam over Entry, \|11'-6"	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 11$ 7/8" 1.55 E TimberStrand ${ }^{\text {® }}$ LSL	
UP1 - Post at Bed 4	Passed	1 piece(s) 4×6 HF No. 2	
UP2 - Post at Master Closet	Passed	1 piece(s) 4×6 HF No. 2	
UP3 - Post at Exercise Room	Passed	3 piece(s) 2×6 HF No. 2	
UP4 - Existing Post at Master Bath	Passed	1 piece(s) 4×6 HF No. 2	
UP5 - Post at South Deck	Passed	1 piece(s) 6×6 DF No. 1	
UP6 - Post at North Master	Passed	1 piece(s) 4×6 HF No. 2	
Main Floor			
Member Name	Results	Current Solution	Comments
J1-Deck J oist, 13'-0"	Passed	1 piece(s) 2×12 DF No. 2 @ 16" OC	
J2-Floor J oist, 14'0"	Passed	1 piece(s) 2×12 HF No. 2 @ 16" OC	
J3-Floor J oist, 17'-0"	Passed	1 piece(s) 2×12 DF No. 2 @ 16" OC	
J4-Floor J oist, 18'0"	Passed	1 piece(s) 2×12 DF No. 2 @ 12" OC	
J5-Entry Floor J oist, 12'-0"	Passed	1 piece(s) 2×8 DF No. 1 @ 16" OC	
B1 - Garage Floor Beam, 9'-0"	Passed	1 piece(s) 4×12 DF No. 2	
B2-Office Flush Beam, Grid A	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 15^{\prime \prime} 24 F-V 4$ DF Glulam	
B3 - Bedroom 2 Window Header, Grid 1	Passed	1 piece(s) $31 / 8{ }^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
B4 - Kitchen Flush Beam, Grid 1	Passed	2 piece(s) $13 / 4^{\prime \prime} \times 111 / 4^{\prime \prime} 2.0$ E Microllam ${ }^{\circledR}$ LVL	
B5 - Deck Flush Beam	Passed	3 piece(s) $13 / 4^{\prime \prime} \times 111 / 4^{\prime \prime} 2.0$ E Microllam ${ }^{\text {® }}$ LVL	
B6 - Deck Flush Beam	Passed	3 piece(s) $13 / 4 " \times 11$ 1/4" 2.0E Microllam® LVL	
B8 - Family Room Flush Beam, Grid C	Passed	1 piece(s) $51 / 8{ }^{\prime \prime} \times 15{ }^{\text {" }} 24 \mathrm{~F}-\mathrm{V} 4$ DF Glulam	
P1-Garage Header Post	Passed	1 piece(s) 6×6 DF No. 1	
P2 - Garage Wall Post	Passed	1 piece(s) 6×6 DF No. 1	
P3 - Living Room Wall Post, Grid 1	Passed	1 piece(s) 6×6 DF No. 1	
P4 - Living Room Wall Post, Grid 3	Passed	1 piece(s) 4×6 HF No. 2	
P5 - Kitchen Wall Post, Grid D	Passed	1 piece(s) 6×8 DF No. 1	

Basement			
Member Name	Results	Current Solution	Comments
BP1 - Basement Wall Post	Passed	1 piece(s) 6×8 DF No.1	
BP2 - Basement Corner Wall Post	Passed	1 piece(s) 6×6 DF No.1	
BP3 - Deck Post	Passed	1 piece(s) 6×6 DF No.1	

1 piece(s) 2×10 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$369 @ 11^{\prime} 31 / 2^{\prime \prime}$	$911(1.50 ")$	Passed (41\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$318 @ 10^{\prime} 61 / 4^{\prime \prime}$	1596	Passed (20\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1024 @ 5^{\prime} 9{ }^{\prime \prime}$	2204	Passed (46\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.106 @ 5^{\prime} 9{ }^{\prime \prime}$	0.554	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.176 @ 5^{\prime} 9{ }^{\prime \prime}$	0.739	Passed (L/756)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	153	230	383	Blocking
2 - Hanger on 9 1/4" GLB beam	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	151	227	378	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 3{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 4 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $11^{\prime} 5^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

1 piece(s) 2×10 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$453 @ 21 / 2^{\prime \prime}$	$2126(3.50 ")$	Passed (21\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$382 @ 11^{\prime} 3 / 4^{\prime \prime}$	1596	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1445 @ 6^{\prime} 91 / 2^{\prime \prime}$	2204	Passed (66\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.210 @ 6^{\prime} 91 / 2^{\prime \prime}$	0.658	Passed (L/751)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.351 @ 6^{\prime} 91 / 2^{\prime \prime}$	0.878	Passed (L/451)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	181	272	453	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	181	272	453	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 6 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 7{ }^{\prime \prime} \circ / \mathrm{c}$	

\bullet •Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 7^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Roof, RJ 3 - Existing $2 \times 10,9^{\prime}-6^{\prime \prime}$
1 piece(s) 2×10 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$336 @ 21 / 2^{\prime \prime}$	$2126(3.50 ")$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$265 @ 11^{\prime} 3 / 4^{\prime \prime}$	1596	Passed (17\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$779 @ 5^{\prime} 1 / 2^{\prime \prime}$	2204	Passed (35\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.061 @ 5^{\prime} 1 / 2^{\prime \prime}$	0.483	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.102 @ 5^{\prime} 1 / 2^{\prime \prime}$	0.644	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50 "$	134	202	336	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime \prime}$	$3.50^{\prime \prime}$	$1.50 "$	134	202	336	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 1^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 1^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $10^{\prime} 1^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Roof, RJ 4 - Existing $2 \times 12,17^{\prime}-6^{\prime \prime}$
1 piece(s) 2×12 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$586 @ 17^{\prime} 91 / 2^{\prime \prime}$	$911(1.50 ")$	Passed (64\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$524 @ 16^{\prime} 101 / 4^{\prime \prime}$	1941	Passed (27\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2576 @ 9^{\prime}$	2964	Passed (87\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.372 @ 9$	0.879	Passed (L/567)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.620 @ 9{ }^{\prime}$	1.172	Passed (L/340)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	240	360	600	Blocking
2 - Hanger on 11 1/4" GLB beam	$1.50^{\prime \prime}$	Hanger 11	$1.50^{\prime \prime}$	238	357	594	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 6$ " $0 / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 10 \mathrm{o} / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $17^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Upper Roof, RJ5-Master Bed Roof Joist , 7'-6"

1 piece(s) 2×12 HF No. 2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$375 @ 11 / 2^{\prime \prime}$	$911(1.50 ")$	Passed (41\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$281 @ 11^{\prime} 3 / 4^{\prime \prime}$	1941	Passed (14\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$703 @ 3^{\prime} 101 / 2^{\prime \prime}$	2964	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.018 @ 3^{\prime} 101 / 2^{\prime \prime}$	0.375	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.031 @ 3^{\prime} 101 / 2^{\prime \prime}$	0.500	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180)

- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on $111 / 4^{\prime \prime}$ GLB beam	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	155	233	388	See note ${ }^{1}$
2 - Hanger on $111 / 4^{\prime \prime}$ GLB beam	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	155	233	388	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 6{ }^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$7^{\prime} 6 " 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to 7' 9"	$24^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Upper Roof, RB1 - Bed 4 Flush Beam, 10'-6"

1 piece(s) 5 1/8" x 9" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3298 @ 1/4"	5830 (1.75")	Passed (57\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	2750 @ $103 / 4 "$	9371	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	8829 @ 5' 4 3/4"	15913	Passed (55\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.193 @ 5' 4 3/4"	0.538	Passed (L/668)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.328 @ 5' 4 3/4"	0.717	Passed (L/394)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $\mathrm{L}=10^{\prime} 9^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Column - HF	$1.75^{\prime \prime}$	$1.75^{\prime \prime}$	$1.50^{\prime \prime}$	1355	1943	3298	None
2- Column - HF	$1.75^{\prime \prime}$	$1.75^{\prime \prime}$	$1.50^{\prime \prime}$	1355	1943	3298	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 10{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $10^{\prime} 91 / 2^{\prime \prime}$	N / A	11.2	--	
1 - Uniform (PSF)	0 to $10^{\prime} 91 / 2^{\prime \prime}$ (Front)	12^{\prime}	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Roof, RB2 - Bath 4 Header, 5'-0"

2 piece(s) $\mathbf{2}$ x $\mathbf{1 0 ~ H F ~ N o . ~} 2$

Overall Length: 5' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1767 @ 0$	$1823(1.50$ ")	Passed (97\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1761 @ 103 / 4^{\prime \prime}$	3191	Passed (55\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1764 @ 11^{\prime}$	3833	Passed (46\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.015 @ 2^{\prime} 35 / 8^{\prime \prime}$	0.262	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.025 @ 2^{\prime} 311 / 6^{\prime \prime}$	0.350	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	674	1093	1767	None
2 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	173	257	430	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 3 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $5^{\prime} 3^{\prime \prime}$	N/A	7.0	--	
1 - Point (Ib)	$1^{\prime}(T o p)$	N/A	810	1350	Flush Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3591 @ 2 "$	$11659(3.50 ")$	Passed (31\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$2980 @ 1^{\prime} 1 / 2^{\prime \prime}$	9371	Passed (32\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$10406 @ 6^{\prime} 11 / 2^{\prime \prime}$	15913	Passed (65\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.279 @ 6^{\prime} 11 / 2^{\prime \prime}$	0.596	Passed (L/512)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.475 @ 6^{\prime} 11 / 2^{\prime \prime}$	0.794	Passed (L/301)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 11^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Column - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	1477	2113	3591	Blocking
2- Column - HF	$3.50^{\prime \prime \prime}$	$3.50^{\prime \prime}$	$1.50 "$	1477	2113	3591	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 3 \prime \prime$ " $/ \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 3 \prime \mathrm{l} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $12^{\prime} 3^{\prime \prime}$	N/A	11.2	--	
1 - Uniform (PSF)	0 to $12^{\prime} 3^{\prime \prime}(T o p)$	$11^{\prime} 6 \prime$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5804 @ 9^{\prime} 111 / 4^{\prime \prime}$	$11659\left(3.50^{\prime \prime}\right)$	Passed (50\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$2762 @ 9^{\prime} 1 / 2^{\prime \prime}$	9371	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$4501 @ 4^{\prime} 21 / 16^{\prime \prime}$	15913	Passed (28\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Neg Moment (Ft-lbs)	$-5113 @ 9^{\prime} 111 / 4^{\prime \prime}$	12266	Passed (42\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.071 @ 4^{\prime} 75 / 8^{\prime \prime}$	0.489	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.118 @ 4^{\prime} 75 / 16^{\prime \prime}$	0.651	Passed (L/994)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=8^{\prime} 1 / 8^{\prime \prime}$
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=4^{\prime} 1011 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Column - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	952	1389	2341	Blocking
2-Column - HF	$3.50^{\prime \prime}$	$3.50 "$	$1.74^{\prime \prime}$	2391	3413	5804	Blocking
3-Column - HF	$3.50^{\prime \prime}$	$3.50 "$	$1.50^{\prime \prime}$	385	751	1136	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 2$ " o/c	
Bottom Edge (Lu)	$16^{\prime} 2 \mathrm{c}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $16^{\prime} 11 / 2^{\prime \prime}$	N / A	11.2	--	
1 - Uniform (PSF)	0 to $16^{\prime} 11 / 2^{\prime \prime}$ (Top)	11^{\prime}	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Roof, RB5 - Existing Glulam, 17'-0"
1 piece(s) 5 1/ 8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$6176 @ 2 "$	$11659(3.50 ")$	Passed (53\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$5268 @ 11^{\prime} 31 / 2^{\prime \prime}$	12495	Passed (42\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Pos Moment (Ft-lbs)	$26128 @ 8^{\prime} 91 / 2^{\prime \prime}$	28290	Passed (92\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.619 @ 8^{\prime} 91 / 2^{\prime \prime}$	0.863	Passed (L/335)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$1.053 @ 8^{\prime} 91 / 2^{\prime \prime}$	1.150	Passed (L/196)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(All} \mathrm{Spans)}$

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=17^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Column - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.85^{\prime \prime}$	2549	3627	6176	Blocking
2 - Column - HF	$3.50^{\prime \prime \prime}$	$3.50^{\prime \prime}$	$1.85^{\prime \prime}$	2549	3627	6176	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 7^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 7^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $17^{\prime} 7^{\prime \prime}$	N/A	14.9	--	
1 - Uniform (PSF)	0 to $17^{\prime} 7^{\prime \prime}$ (Top)	$13^{\prime} 9 \prime \prime$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

Upper Roof, RB8 - South Master Roof Beam, 3'-3" Cantilever

1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11260 @ 12' $81 / 4{ }^{\prime \prime}$	11659 (3.50")	Passed (97\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	7935 @ 11' 6 1/2"	12495	Passed (64\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	22323 @ 8'9"	28290	Passed (79\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Neg Moment (Ft-lbs)	-10875 @ 12' $81 / 4{ }^{\prime \prime}$	28290	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.221 @ 6' 11 9/16"	0.626	Passed (L/680)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.352 @ 6' 10 15/16"	0.835	Passed (L/427)	--	1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 57 / 8^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=4^{\prime} 93 / 16^{\prime \prime}$
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Column - HF	$3.50 "$	$3.50^{\prime \prime}$	$1.50 "$	1053	1614	2667	Blocking
2 - Column - HF	$3.50 "$	$3.50^{\prime \prime}$	$3.38^{\prime \prime}$	5003	6257	11260	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 1^{\prime \prime} o / c$	
Bottom Edge (Lu)	$16^{\prime} 1^{\prime \prime} o / c$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to 16' ${ }^{\prime \prime}$	N/A	14.9	--	
1 - Point (lb)	8' 9"' (Front)	N/A	4322	5875	Linked from: RB6 - Master Bed Flush Beam, 31'-0", Support 1
2-Point (lb)	16 ((Front)	N/A	1494	1763	Linked from: RB7 Deck Roof Flush Beam, 31'-0", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Roof, RB9 - North Master Roof Beam, 3'-3" Cantilever

1 piece(s) 5 1/ 8" x 12" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$12045 @ 8^{\prime} 21 / 4^{\prime \prime}$	$18322\left(5.50{ }^{\prime \prime}\right)$	Passed (66\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$8697 @ 6^{\prime} 111 / 2^{\prime \prime}$	12495	Passed (70\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$11003 @ 5^{\prime} 6^{\prime \prime}$	28290	Passed (39\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Neg Moment (Ft-lbs)	$-15039 @ 8^{\prime} 21 / 4^{\prime \prime}$	28290	Passed (53\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.143 @ 13^{\prime} 1^{\prime \prime}$	0.490	Passed (2L/822)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.220 @ 13^{\prime} 1^{\prime \prime}$	0.653	Passed (2L/534)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 81 / 8^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 71 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Column - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	638	$1467 /-19$	2106	Blocking
2-Column - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$3.62^{\prime \prime}$	5373	6672	12045	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 1$ " o/c	
Bottom Edge (Lu)	$13^{\prime} 1$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $13^{\prime} 1^{\prime \prime}$	N/A	14.9	--	
1- Point (Ib)	$5^{\prime} 6^{\prime \prime}$ (Front)	N/A	4322	5875	Linked from: RB6 - Master Bed Flush Beam, 31'-0", Support 1
2-Point (Ib)	$12^{\prime} 9 "$ (Front)	N/A	1494	1763	Linked from: RB7 - Deck Roof Flush Beam, 31'0", Support 1

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Roof, RB10 - Exercise Room Header, 5'-0"

2 piece(s) 2×8 HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$999 @ 0$	$1823(1.50 ")$	Passed (55\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$721 @ 83 / 4^{\prime \prime}$	2501	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Member Type : Drop Beam					
Moment (Ft-lbs)	$1311 @ 2^{\prime} 71 / 2^{\prime \prime}$	2569	Passed (51\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.031 @ 2^{\prime} 71 / 2^{\prime \prime}$	0.262	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.053 @ 2^{\prime} 71 / 2^{\prime \prime}$	0.350	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180)
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	1.50"	1.50"	1.50"	408	591	999	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	408	591	999	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 3$ " o/c	
Bottom Edge (Lu)	$5^{\prime} 3$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $5^{\prime} 3^{\prime \prime}$	N/A	5.5	--	
1 - Uniform (PSF)	0 to $5^{\prime} 3^{\prime \prime}(T o p)$	$7^{\prime} 6^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Roof, RB11 - Bedroom Header, 5'-3"
$\mathbf{1}$ piece(s) $\mathbf{4 \times 1 0} \mathbf{~ H F}$ No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$779 @ 5^{\prime} 71 / 2^{\prime \prime}$	$2126(1.50 ")$	Passed (37\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$525 @ 1^{\prime} 1 / 4^{\prime \prime}$	3723	Passed (14\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1071 @ 2^{\prime} 101 / 2^{\prime \prime}$	4879	Passed (22\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.011 @ 2^{\prime} 101 / 2^{\prime \prime}$	0.275	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.019 @ 2^{\prime} 101 / 2^{\prime \prime}$	0.367	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Column Cap - steel	$3.00 "$	$3.00^{\prime \prime}$	$1.50 "$	340	474	814	None
2 - Trimmer - HF	$1.50 "$	$1.50 "$	$1.50^{\prime \prime}$	325	454	779	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 8^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 8 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $5^{\prime} 71 / 2^{\prime \prime}$	N / A	8.2	--	
1 - Uniform (PSF)	0 to $5^{\prime} 71 / 2^{\prime \prime}(\mathrm{Top})$	$5^{\prime} 6^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Lower Roof, RJ 6 - Existing Powder Roof Joist, 9'-8"

1 piece(s) 2×8 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$342 @ 21 / 2^{\prime \prime}$	$2126(3.50 ")$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$282 @ 103 / 4^{\prime \prime}$	1251	Passed (23\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$806 @ 5^{\prime} 11 / 2^{\prime \prime}$	1477	Passed (55\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.136 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.492	Passed (L/868)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.226 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.656	Passed (L/521)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	137	205	342	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	137	205	342	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 2^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 3 \prime \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $10^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Lower Roof, RJ 7 - Existing Office Roof Joist, 14'-3"

1 piece(s) $\mathbf{2} \times 10$ HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$494 @ 21 / 2^{\prime \prime}$	$2126(3.50 ")$	Passed (23\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$424 @ 11^{\prime} 3 / 4^{\prime \prime}$	1596	Passed (27\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1732 @ 7^{\prime} 55^{\prime \prime}$	2204	Passed (79\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.302 @ 7^{\prime} 5^{\prime \prime}$	0.721	Passed (L/572)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.504 @ 7^{\prime} 5^{\prime \prime}$	0.961	Passed (L/343)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	198	297	494	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	198	297	494	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 10^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 10^{\prime \prime}$	$16^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$742 @ 21 / 2^{\prime \prime}$	$1581(3.50 ")$	Passed (47\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$713 @ 31 / 2^{\prime \prime}$	1794	Passed (40\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2598 @ 7^{\prime} 55^{\prime \prime}$	3634	Passed (71\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.246 @ 7^{\prime} 5^{\prime \prime}$	0.721	Passed (L/702)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.411 @ 7^{\prime} 5^{\prime \prime}$	0.961	Passed (L/421)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Stud wall - HF	3.50 "	3.50 "	1.75"	297	445	742	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.75"	297	445	742	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 6 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 10^{\prime \prime}$	$24^{\prime \prime}$	20.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Lower Roof, RJ 9 - Entry Roof Joist, 11'-4"

1 piece(s) 2×10 HF No. 2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	746 @ 2"	1823 (3.00")	Passed (41\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	617 @ 1' 1/4"	1596	Passed (39\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2083 @ 5' 11"	2204	Passed (94\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.184 @ 5' 11"	0.575	Passed (L/752)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.386 @ 5' 11"	0.767	Passed (L/358)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Stud wall - HF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	391	355	746	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	393	358	751	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$2^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $11^{\prime} 101 / 2^{\prime \prime}$	$24 "$	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Lower Roof, RB12 - Living Room Roof Beam, Grid B

1 piece(s) 5 1/8" x 21" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$8941 @ 14^{\prime} 5{ }^{\prime \prime}$	$11211\left(3.50{ }^{\prime \prime}\right)$	Passed (80\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$6437 @ 2^{\prime} 1 / 2^{\prime \prime}$	21866	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$31123 @ 7^{\prime} 31 / 2^{\prime \prime}$	85162	Passed (37\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.059 @ 7^{\prime} 31 / 2^{\prime \prime}$	0.712	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.160 @ 7^{\prime} 31 / 2^{\prime \prime}$	0.950	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length $\mathrm{L}=14^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Column - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.68^{\prime \prime}$	5659	3281	8941	None
2 - Beam - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$2.79^{\prime \prime}$	5659	3281	8941	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 7{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$14^{\prime} 7^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to $14^{\prime} 7^{\prime \prime}$	N/A	26.2	--	
1- Uniform (PSF)	0 to $14^{\prime} 7^{\prime \prime}$ (Front)	15^{\prime}	20.0	30.0	Roof
2 - Uniform (PLF)	0 to $14^{\prime} 7^{\prime \prime}$ (Top)	N/A	450.0	-	Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Lower Roof, RB13 - Existing Entry Header, 12'-0"

3 piece(s) 2×10 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12	
Member Reaction (lbs)	853 @ 1 1/2"	8438 (3.00")	Passed (10\%)	--	1.0 D + 1.0 S (All Spans)		
Shear (lbs)	714 @ 1' 1/4"	5744	Passed (12\%)	1.15	1.0 D + 1.0 S (All Spans)		
Moment (Ft-lbs)	2561 @ 6' 3"	6088	Passed (42\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.064 @ 6' 3"	0.613	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)		
Total Load Defl. (in)	0.146 @ 6' 3"	0.817	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Trimmer - HF	3.00"	3.00 "	1.50"	478	375	853	None
2 - Trimmer - HF	$3.00 "$	3.00 "	1.50"	478	375	853	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 66^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 6{ }^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $12^{\prime} 6^{\prime \prime}$	N/A	10.6	--	
1 - Uniform (PSF)	0 to $12^{\prime} 6^{\prime \prime}(T o p)$	2^{\prime}	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Lower Roof, RB14 - Existing Entry Header, 8'-9"

3 piece(s) 2×10 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System: Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology: ASD Member Pitch : 0/12
Member Reaction (lbs)	2525 @ 11/2"	8438 (3.00")	Passed (30\%)	--	1.0 D + 1.0 S (All Spans)	
Shear (lbs)	1968 @ 1' 1/4"	5744	Passed (34\%)	1.15	1.0 D + 1.0 S (All Spans)	
Moment (Ft-lbs)	5529 @ 4' $71 / \mathbf{2}^{\prime \prime}$	6088	Passed (91\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Live Load Defl. (in)	0.079 @ 4' 7 1/2"	0.450	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Total Load Defl. (in)	0.170 @ 4' 7 1/2"	0.600	Passed (L/636)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	3.00"	3.00 "	1.50"	1346	1179	2525	None
2 - Trimmer - HF	$3.00 "$	3.00 "	1.50"	1346	1179	2525	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 3 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$9^{\prime} 3 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 3^{\prime \prime}$	N/A	10.6	--	
1 - Uniform (PSF)	0 to $9^{\prime} 3^{\prime \prime}(T o p)$	$8^{\prime} 6 "$	33.0	30.0	Roof w/ Gravel

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2457 @ 11 / 2^{\prime \prime}$	$6094(3.00 ")$	Passed (40\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$2096 @ 13^{\prime \prime}$	7619	Passed (28\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$10139 @ 8^{\prime} 6^{\prime \prime}$	17250	Passed (59\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.197 @ 8^{\prime} 6^{\prime \prime}$	0.837	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.632 @ 8^{\prime} 6^{\prime \prime}$	1.117	Passed (L/318)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=16^{\prime} 9$ ".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	$3.00 "$	$3.00 "$	$1.50 "$	1692	765	2457	None
2 - Trimmer - HF	$3.00 "$	$3.00 "$	$1.50 "$	1692	765	2457	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$17^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to 17^{\prime}	N / A	9.1	--	
1- Uniform (PSF)	0 to $17^{\prime}(\mathrm{Top})$	2^{\prime}	20.0	30.0	Roof
2 - Uniform (PLF)	0 to $17^{\prime}(\mathrm{Top})$	N / A	150.0	30.0	Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Lower Roof, RB16 - Office Flush Header, Grid A

1 piece(s) $\mathbf{4 \times 1 0} \mathbf{~ H F}$ No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1465 @ 11 / 2^{\prime \prime}$	$4253(3.00 ")$	Passed (34\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$966 @ 11 / 4^{\prime \prime}$	3723	Passed (26\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2018 @ 3^{\prime}$	4879	Passed (41\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.020 @ 3^{\prime}$	0.287	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.040 @ 3^{\prime}$	0.383	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	$3.00 "$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	745	720	1465	None
2 - Trimmer - HF	$3.00 "$	$3.00 "$	$1.50^{\prime \prime}$	745	720	1465	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} o / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6^{\prime}	N/A	8.2	--	
1- Uniform (PSF)	0 to 6^{\prime} (Top)	$7 \prime$	20.0	30.0	Roof
2 - Uniform (PLF)	0 to 6^{\prime} (Top)	N/A	100.0	30.0	Parapet w/ veneer

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$529 @ 21 / 2^{\prime \prime}$	$1041\left(2.25^{\prime \prime}\right)$	Passed (51\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$508 @ 31 / 2^{\prime \prime}$	1560	Passed (33\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$-1077 @ 12^{\prime} 21 / 4^{\prime \prime}$	2726	Passed (40\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.075 @ 5^{\prime} 97 / 16^{\prime \prime}$	0.299	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.109 @ 55^{\prime} 83 / 4^{\prime \prime}$	0.599	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro™ Rating	56	45	Passed	--	--

System : Floor
Member Type : Joist Building Use : Residential Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 480)$ and $T L(2 L / 240)$.
- Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Stud wall - HF	3.50"	2.25 "	$1.75{ }^{\prime \prime}$	152	388	32/-17	540	1 1/4" Rim Board
2-Stud wall - HF	3.50"	3.50 "	3.50"	486	132	424	910	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5 ' $2 \mathrm{o} o / \mathrm{c}$	
Bottom Edge (Lu)	5 ' $6 \mathrm{o} ~ \mathrm{o}$	c

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1- Uniform (PSF)	0 to $6^{\prime} 6^{\prime \prime}$	$16^{\prime \prime}$	22.0	60.0	-	Roof Deck
2 - Uniform (PSF)	$6^{\prime} 6^{\prime \prime}$ to $17^{\prime} 4^{\prime \prime}$	$16^{\prime \prime}$	31.0	-	30.0	Low Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$446 @ 21 / 2^{\prime \prime}$	$1041\left(2.25{ }^{\prime \prime}\right)$	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$433 @ 31 / 2^{\prime \prime}$	1560	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1391 @ 66^{\prime} 61 / 2^{\prime \prime}$	3160	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.111 @ 6^{\prime} 61 / 2^{\prime \prime}$	0.317	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.145 @ 66^{\prime} 61 / 2^{\prime \prime}$	0.633	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	54	45	Passed	--	--

System : Floor
Member Type: Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1-Stud wall - HF	3.50 "	2.25"	$1.75{ }^{\prime \prime}$	105	349	454	1 1/4" Rim Board
2 - Stud wall - HF	3.50 "	2.25"	1.75"	105	349	454	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 10^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

\bullet-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 1^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UJ 3 - Shower Floor J oist, 6'-0"
1 piece(s) 2×8 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$221 @ 21 / 2^{\prime \prime}$	$1367\left(2.25^{\prime \prime}\right)$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$166 @ 103 / 4^{\prime \prime}$	1088	Passed (15\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$330 @ 3$ ' $31 / 2^{\prime \prime}$	1284	Passed (26\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.028 @ 33^{\prime} 31 / 2^{\prime \prime}$	0.154	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.036 @ 33^{\prime} 31 / 2^{\prime \prime}$	0.308	Passed (L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	53	176	228	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - HF	$3.50 "$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	53	176	228	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 5^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 5{ }^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $6^{\prime} 7 "$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UJ 4 - Landing Floor Joist, 9'-6"
1 piece(s) 2×12 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD
Member Reaction (lbs)	329 @ 1 1/2"	911 (1.50")	Passed (36\%)	--	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	264 @ 1'3/4"	1688	Passed (16\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Moment (Ft-lbs)	782 @ 4' 10 1/2"	2577	Passed (30\%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.042 @ 4' 10 1/2"	0.237	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.055 @ 4' 10 1/2"	0.475	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A	

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Hanger on $111 / 4^{\prime \prime} \mathrm{HF}$ beam	1.50"	Hanger ${ }^{1}$	1.50"	78	260	338	See note ${ }^{1}$
2 - Hanger on $111 / 4^{\prime \prime} \mathrm{HF}$ beam	1.50"	Hanger ${ }^{1}$	1.50"	78	260	338	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 66^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$9^{\prime} 6 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1- Uniform (PSF)	0 to 9' 9"	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Upper Floor, UJ 5 - Master Floor J oist, 18'-0"
1 piece(s) 2×12 HF No. 2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	468 @ 1 1/2"	911 (1.50")	Passed (51\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	419 @ 1' 3/4"	1688	Passed (25\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Moment (Ft-lbs)	2106 @ 9' 1 1/2"	2577	Passed (82\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.408 @ 9' 1 1/2"	0.450	Passed (L/529)	--	1.0 D + 1.0 L (All Spans)		
Total Load Defl. (in)	0.531 @ 9' 1 1/2"	0.900	Passed (L/407)	--	1.0 D + 1.0 L (All Spans)		
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on Single 2X HF plate	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	110	365	475	See note $^{1}{ }^{1}$
2 - Hanger on Single 2X HF plate	$1.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	110	365	475	See note $^{1}{ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 8^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$18^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $18^{\prime} 3^{\prime \prime}$	$12^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Maxwell Skotheim

Quantum Consulting Engineers
(206) 957-3906

MSkotheim@quantumce.com ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 23127 Hong and Kao Residence - Main House

Upper Floor, UJ 6 - Deck Joist, 12'-6"

1 piece(s) 4×8 DF No. 1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD
Member Reaction (lbs)	683 @ 1 1/2"	3281 (1.50")	Passed (21\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Shear (lbs)	617 @ 8 3/4"	3045	Passed (20\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Moment (Ft-lbs)	2135 @ 6' $41 / 2^{\prime \prime}$	3820	Passed (56\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Live Load Defl. (in)	0.233 @ 6' $41 / 2^{\prime \prime}$	0.313	Passed (L/645)	--	1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.318 @ 6' 4 1/2"	0.625	Passed (L/472)	--	1.0 D + 1.0 L (All Spans)	
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A	

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Hanger on Single $2 \times$ HF plate	1.50"	Hanger ${ }^{1}$	1.50 "	187	510	697	See note ${ }^{1}$
2 - Hanger on Single $2 \times$ HF plate	1.50 "	Hanger ${ }^{1}$	1.50"	187	510	697	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 6 \mathrm{o} \circ \mathrm{o} \mathrm{C}$	
Bottom Edge (Lu)	$12^{\prime} 6 \mathrm{o} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 9 "$	$16^{\prime \prime}$	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Floor, UJ 7 - Deck Joist, 6'-0"
1 piece(s) 4×8 DF No. 1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD
Member Reaction (lbs)	328 @ $11 / 2^{\prime \prime}$	3281 (1.50")	Passed (10\%)	--	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	262 @ 8 3/4"	3045	Passed (9\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Moment (Ft-lbs)	492 @ 3' 1 1/2"	3820	Passed (13\%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.012 @ 3' 1 1/2"	0.150	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.017 @ 3' 1 1/2"	0.300	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A	

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on 7 1/4" LVL beam	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	92	250	342	See note $^{1}{ }^{1}$
2 - Hanger on Single 2X HF plate	$1.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	92	250	342	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6 o/c	
Bottom Edge (Lu)	$6 '$ o/c	

\bullet Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $6^{\prime} 3 "$	$16^{\prime \prime}$	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

MEMBER REPORT

Upper Floor, UJ 8 - Landing Floor J oist, 7'-0"
1 piece(s) $\mathbf{2} \times 6$ HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$243 @ 11 / 2^{\prime \prime}$	$911(1.50 ")$	Passed (27\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$211 @ 7^{\prime \prime}$	825	Passed (26\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$425 @ 3^{\prime} 71 / 2^{\prime \prime}$	801	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.107 @ 3^{\prime} 71 / 2^{\prime \prime}$	0.175	Passed (L/788)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Joist					
Building Codential $:$ IBC 2018					
Total Load Defl. (in)	$0.139 @ 3^{\prime} 71 / 2^{\prime \prime}$	0.350	Passed (L/606)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Hanger on $51 / 2^{\prime \prime} \mathrm{HF}$ beam	1.50"	Hanger ${ }^{1}$	1.50"	58	193	251	See note ${ }^{1}$
2 - Hanger on $51 / 2^{\prime \prime} \mathrm{HF}$ beam	1.50 "	Hanger ${ }^{1}$	1.50"	58	193	251	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7 o/c	
Bottom Edge (Lu)	$7 \prime$ o/c	

\bullet-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners
Accessories					
1 - Top Mount Hanger	THA29	$2.25^{\prime \prime}$	$4-10 \mathrm{~d}$	$6-10 \mathrm{~d}$	$4-10 \mathrm{~d}$
2 - Top Mount Hanger	THA29	$2.25^{\prime \prime}$	$4-10 \mathrm{~d}$	$6-10 \mathrm{~d}$	$4-10 \mathrm{~d}$

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $7^{\prime} 3 "$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Upper Floor, UB1 - Garage Door Header, 9'-6"
1 piece(s) 5 1/8" x 10 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$6230 @ 1 / 2^{\prime \prime}$	$6663\left(2.00^{\prime \prime}\right)$	Passed (94\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4832 @ 11^{\prime} 1 / 2^{\prime \prime}$	9507	Passed (51\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$14819 @ 4^{\prime} 11^{\prime \prime}$	18834	Passed (79\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.110 @ 4^{\prime} 11^{\prime \prime}$	0.325	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.290 @ 4^{\prime} 11^{\prime \prime}$	0.488	Passed (L/404)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=9^{\prime} 9^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Trimmer - HF	2.00"	2.00 "	1.87"	3870	2262	885	6230	None
2 - Trimmer - HF	2.00"	2.00 "	1.87"	3870	2262	885	6230	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 10^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$9^{\prime} 10 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 10$ "	N/A	13.1	--	--	
1 - Uniform (PSF)	0 to $9^{\prime} 10^{\prime \prime}$ (Top)	11' 6"	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 9' 10" (Top)	$6{ }^{\prime}$	18.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 9' 10" (Top)	N/A	528.0	-	-	Wall w/ Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

MEMBER REPORT
Upper Floor, UB3 - Flush Beam at Shower, 11'-9"
1 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$775 @ 2 "$	$2363(1.50 ")$	Passed (33\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Shear (lbs)	$807 @ 10^{\prime} 111 / 8^{\prime \prime}$	4295	Passed (19\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2199 @ 5^{\prime} 101 / 8^{\prime \prime}$	7977	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Live Load Defl. (in)	$0.180 @ 17^{\prime} 4^{\prime \prime}$	0.260	Passed (2L/694)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.184 @ 17^{\prime} 4^{\prime \prime}$	0.521	Passed (2L/678)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 480)$ and $T L(2 L / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on Single 2X HF plate	$2.00 "$	Hanger 1	$1.50 "$	182	$615 /-97$	796	See note 1
2 - Beam - GLB	$5.00 "$	$5.00^{\prime \prime}$	$1.50 "$	450	1232	1682	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$17^{\prime} 2 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$2^{\prime \prime}$ to $17^{\prime} 4^{\prime \prime}$	N / A	6.5	--	
1 - Uniform (PSF)	0 to $17^{\prime} 4^{\prime \prime}$ (Front)	$2^{\prime} 6^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4884 @ 1 / 2^{\prime \prime}$	$6663\left(2.000^{\prime \prime}\right)$	Passed (73\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$3604 @ 11^{\prime \prime}$	8149	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$10066 @ 44^{\prime} 61 / 2^{\prime \prime}$	13838	Passed (73\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.090 @ 44^{\prime} 61 / 2^{\prime \prime}$	0.300	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.283 @ 44^{\prime} 61 / 2^{\prime \prime}$	0.450	Passed (L/381)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=9$ '.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Trimmer - HF	2.00"	2.00 "	1.50"	3335	1181	886	4884	None
2 - Trimmer - HF	2.00"	2.00 "	1.50"	3335	1181	886	4884	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 1 "$ o/c	
Bottom Edge (Lu)	$9^{\prime} 1 "$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ \mathbf{(0 . 9 0)} \end{gathered}$	Floor Live (1.00)	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to 9'1"	N/A	11.2	--	--	
1 - Uniform (PSF)	0 to $9^{\prime} 1^{\prime \prime}$ (Top)	$6{ }^{\prime}{ }^{\prime \prime}$	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 9' 1" (Top)	$6{ }^{\prime} 6$	18.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 9' 1" (Top)	N/A	528.0	-	-	Wall w/ Veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Floor, UB5 - Beam over Pantry, 15'-0"
1 piece(s) 3 1/8" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3647 @ 1 / 2^{\prime \prime}$	$4063\left(2.00^{\prime \prime}\right)$	Passed (90\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$2410 @ 11^{\prime} 8$	9938	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$8813 @ 4^{\prime} 11^{\prime \prime}$	33750	Passed (26\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.042 @ 4^{\prime} 11^{\prime \prime}$	0.325	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.055 @ 4^{\prime} 11^{\prime \prime}$	0.488	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=9^{\prime} 9^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Trimmer - HF	2.00"	2.00 "	1.80 "	893	2753	3647	None
2 - Trimmer - HF	2.00"	2.00 "	1.80"	893	2753	3647	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$9^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 10^{\prime \prime}$	N / A	13.7	--	
1 - Uniform (PSF)	0 to $9^{\prime} 10^{\prime \prime}(\mathrm{Top})$	14^{\prime}	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to
www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UB7 - Flush Header at Master Window, 17'-0"

3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3359 @ 2"	5906 (1.50")	Passed (57\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	2989 @ 1' 1 1/4"	11222	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	14278 @ 8' 8"	24206	Passed (59\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.347 @ 8' 8"	0.425	Passed (L/587)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.624 @ 8' 8"	0.850	Passed (L/327)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on $111 / 4^{\prime \prime}$ GLB beam	$2.00^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1516	1907	3422	See note 1
2- Hanger on $111 / 4^{\prime \prime}$ GLB beam	$2.00 "$	Hanger 1	$1.50^{\prime \prime}$	1516	1907	3422	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS5.50/10	$3.000^{\prime \prime}$	N/A	$30-10 \mathrm{~d}$		
2 - Face Mount Hanger	HHUS5.50/10	$3.00^{\prime \prime}$	N/A	$30-10 \mathrm{~d}$	10 l	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	2" to 17' 2 "	N/A	17.2	--	
1 - Uniform (PSF)	0 to 17' $\mathbf{4 \prime \prime}^{\prime \prime}$ (Top)	$1 '$	12.0	40.0	Floor
2 - Uniform (PSF)	0 to 17' $\mathbf{4}^{\prime \prime}$ (Top)	$3 '$	22.0	60.0	Deck
3 - Uniform (PLF)	0 to 17' 4" (Top)	N/A	80.0	-	Glazing

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Upper Floor, UB12 - Deck Edge Beam, Grid D

2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam $®$ LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$13834 @ 2^{\prime} 43 / 4^{\prime \prime}$	$14438(5.50 ")$	Passed (96\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$1499 @ 11^{\prime} 83 / 4^{\prime \prime}$	7481	Passed (20\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$-1837 @ 10^{\prime} 63 / 4^{\prime \prime}$	16137	Passed (11\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.006 @ 11^{\prime} 91 / 2^{\prime \prime}$	0.200	Passed (2L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.010 @ 11^{\prime} 91 / 2^{\prime \prime}$	0.200	Passed (2L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL ($0.2^{\prime \prime}$) and TL ($0.2^{\prime \prime}$).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- -881 Ibs uplift at support located at $8^{\prime} 71 / 4^{\prime \prime}$. Strapping or other restraint may be required.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Hanger on Single 2X HF plate	2.00"	Hanger ${ }^{1}$	1.50 "	-15	73/-85	-	58/-101	See note ${ }^{1}$
2-Column - DF	5.50"	5.50 "	5.27"	7107	2297	6672	13834	None
3 - Column - DF	5.50"	5.50"	1.50 "	-237	335/-644	-	97/-881	None
4 - Column - DF	5.50"	5.50"	1.50"	1027	1799/-28	-	2826	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 8$ " $0 / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 8 \mathrm{ol}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

\square Weyerhaeuser

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is
responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at
Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to
www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UB13 - Flush Beam over Dining, 19'-9"

1 piece(s) 5 1/8" x 22 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$7983 @ 2 "$	$7983(2.40 ")$	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$7930 @ 2^{\prime} 1 / 2^{\prime \prime}$	20372	Passed (39\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$71995 @ 9^{\prime} 4^{\prime \prime}$	81715	Passed (88\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.296 @ 9 ' 103 / 16^{\prime \prime}$	0.494	Passed (L/802)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.463 @ 9 ' 101 / 4^{\prime \prime}$	0.988	Passed (L/512)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.94 that was calculated using length $L=19^{\prime} 9$ ".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Hanger on 22 1/2" HF beam	$2.00^{\prime \prime}$	Hanger 1	$2.40^{\prime \prime}$	2945	5037	7983	See note ${ }^{1}$
2-Hanger on 22 1/2" HF beam	$2.00^{\prime \prime}$	Hanger 1	$2.09^{\prime \prime}$	2588	4363	6951	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$19^{\prime} 9{ }^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$19^{\prime} 9{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		N/A
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	$2^{\prime \prime}$ to $19^{\prime} 11^{\prime \prime}$	N/A	28.0	--	
1 - Point (Ib)	$9^{\prime} 4 "($ Front $)$	N/A	4980	9400	B6 Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Upper Floor, UB14-Utility Room Header, 5'-6"

2 piece(s) 2×10 HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1283 @ 1 / 2^{\prime \prime}$	$2430(2.00 ")$	Passed (53\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$728 @ 111 / 4^{\prime \prime}$	2775	Passed (26\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1337 @ 2^{\prime} 2^{\prime \prime}$	3333	Passed (40\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.013 @ 2^{\prime} 2^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.017 @ 2^{\prime} 2^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1- Trimmer - HF	2.00"	2.00 "	1.50"	308	975	1283	None
2 - Trimmer - HF	2.00"	2.00"	1.50"	308	975	1283	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 4 \prime$ " o/c	
Bottom Edge (Lu)	$4^{\prime} 4 \prime \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 4^{\prime \prime}$	N/A	7.0	--	
1 - Uniform (PSF)	0 to 4' $4^{\prime \prime}(T o p)$	$11^{\prime} 3 "$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Upper Floor, UB15 - Flush Beam over Entry, 11'-6"

1 piece(s) $\mathbf{3 1 / 2 " \times 1 1 7 / 8 " 1 . 5 5 E ~ T i m b e r S t r a n d ® ~ L S L ~}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3653 @ 11 / 2^{\prime \prime}$	$4725(1.50 ")$	Passed (77\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$2706 @ 11^{\prime} 13 / 8^{\prime \prime}$	7731	Passed (35\%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	$9477 @ 5^{\prime} 111 / 4^{\prime \prime}$	14358	Passed (66\%)	0.90	1.0 D (All Spans)
Member Type : Flush Beam					
Building Use : Residential					
Building Code : IBC 2018					
Design Methodology : ASD					
Total Load Defl. (in)	$0.041 @ 5^{\prime} 111 / 4^{\prime \prime}$	0.291	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Hanger on Single 2X HF plate	1.50 "	Hanger ${ }^{1}$	1.50 "	3329	238	297	3730	See note ${ }^{1}$
2 - Beam - HF	4.50"	4.50"	2.69"	3401	243	303	3810	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$11^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$11 / 2^{\prime \prime}$ to 12^{\prime}	N / A	13.0	--	--	
1- Uniform (PSF)	0 to 12^{\prime} (Front)	1^{\prime}	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 12^{\prime} (Top)	2^{\prime}	18.0	-	25.0	Roof
3- Uniform (PLF)	0 to $12^{\prime}(T o p)$	N / A	500.0	-	-	Wall w/ veneer

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59\%)	--	--
Compression (lbs)	5310	7969	Passed (67\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	5310	7796	Passed (68\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	0	--	--	--	N/A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N/A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/3253)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Bending/Compression	0.63	1	Passed (63\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code: IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
$8^{\prime} 71 / 2^{\prime \prime}$	

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Point (Ib)	N/A	1990	3320	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59\%)	--	--
Compression (lbs)	5804	7969	Passed (73\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	5804	7796	Passed (74\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	0	--	--	--	N/A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N/A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/2976)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Bending/Compression	0.74	1	Passed (74\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
$8^{\prime} 71 / 2^{\prime \prime}$	

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Point (lb)	N/A	2391	3413	Linked from: RB4 - Master Closet Beam, Two Span, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46\%)	--	--
Compression (lbs)	3590	9601	Passed (37\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	3590	10024	Passed (36\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	0	--	--	--	N / A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N / A
Total Deflection (in)	0.02 @ mid-span	0.86	Passed (L/6187)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Bending/Compression	0.22	1	Passed (22\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- The column stability factor ($\mathrm{Kf}=0.6$) applied to this design assumes nailed built-up columns per NDS section 15.3.3. For Weyerhaeuser ELP products refer to the U.S. Wall Guide for multiple-member connection requirements.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall

Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1- Point (lb)	N/A	1477	2113	Linked from: RB3 - Exercise Room Beam, 11'-8", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	30	50	Passed (59\%)	--	--
Compression (lbs)	6176	7969	Passed (78\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	6176	7796	Passed (79\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	0	--	--	--	N / A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N / A
Total Deflection (in)	0.04 @ mid-span	0.86	Passed (L/2797)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Bending/Compression	0.83	1	Passed (83\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
$8^{\prime} 71 / 2^{\prime \prime}$	

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1 - Point (lb)	N/A	2549	3627	Linked from: RB5 - Existing Glulam, 17'-0", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38\%)	--	--
Compression (lbs)	11260	25830	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	11260	12251	Passed (92\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	0	--	--	--	N/A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N / A
Total Deflection (in)	0.03 @ mid-span	0.86	Passed (L/2967)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Bending/Compression	0.43	1	Passed (43\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code: IBC 2018
Design Methodology : ASD

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Point (Ib)	N/A	5003	6257	Linked from: RB8 - South Master Roof Beam, 3'-3" Cantilever, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination [Load Group]
Slenderness	27	50	Passed (55\%)	--	--
Compression (lbs)	2105	9143	Passed (23\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$
Plate Bearing (lbs)	2105	7796	Passed (27\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$
Lateral Reaction (lbs)	0	--	--	--	N/A
Lateral Shear (lbs)	0	$\mathrm{~N} / \mathrm{A}$	Passed (N/A)	--	N / A
Lateral Moment (ft-lbs)	0 @ mid-span	N / A	Passed (N/A)	--	N / A
Total Deflection (in)	0.01 @ mid-span	0.86	Passed (L/8207)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$
Bending/Compression	0.11	1	Passed (11\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code: IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
8^{\prime}	

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Point (lb)	N/A	638	$1467 /-19$	Linked from: RB9 - North Master Roof Beam, 3'-3" Cantilever, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, J1 - Deck Joist, 13'-0"
1 piece(s) 2×12 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on Single 2X HF plate	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	194	530	724	See note $^{1}{ }^{1}$
2 - Hanger on Single 2X HF plate	$1.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	194	530	724	See note $^{1}{ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5 ' o/c	
Bottom Edge (Lu)	$13^{\prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, J2-Floor Joist, 14'-0"
1 piece(s) 2×12 HF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use: Residential Building Code : IBC 2018 Design Methodology : ASD	
Member Reaction (lbs)	485 @ $11 / 2^{\prime \prime}$	911 (1.50")	Passed (53\%)	--	1.0 D + 1.0 L (All Spans)		
Shear (lbs)	420 @ 1' 3/4"	1688	Passed (25\%)	1.00	1.0 D + 1.0 L (All Spans)		
Moment (Ft-lbs)	1699 @ 7' 1 1/2"	2577	Passed (66\%)	1.00	1.0 D + 1.0 L (All Spans)		
Live Load Defl. (in)	0.199 @ 7' 1 1/2"	0.350	Passed (L/843)	--	1.0 D + 1.0 L (All Spans)		
Total Load Defl. (in)	0.259 @ 7' 1 1/2"	0.700	Passed (L/649)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on Single 2X HF plate	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	114	380	494	See note $^{1}{ }^{1}$
2 - Hanger on Single 2X HF plate	$1.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	114	380	494	See note $^{1}{ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 6{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	14^{\prime} o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, J3-Floor Joist, 17'-0"
1 piece(s) 2×12 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD
Member Reaction (lbs)	572 @ 1 1/2"	1406 (1.50")	Passed (41\%)	--	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	507 @ 1' 3/4"	2025	Passed (25\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Moment (Ft-lbs)	2360 @ 8' $41 / 2^{\prime \prime}$	2729	Passed (86\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Live Load Defl. (in)	0.312 @ 8' $41 / 2^{\prime \prime}$	0.412	Passed (L/634)	--	1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.406 @ 8' 4 1/2"	0.825	Passed (L/488)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A	

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Hanger on Single 2X HF plate	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	134	447	581	See note ${ }^{1}$
2 - Hanger on Single 2X HF plate	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	134	447	581	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 6 \mathrm{o} \mathrm{o} / \mathrm{C}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 9 "$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Weyerhaeuser

Main Floor, J4-Floor Joist, 18'-0"
1 piece(s) 2×12 DF No. 2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD
Member Reaction (lbs)	468 @ 1 1/2"	1406 (1.50")	Passed (33\%)	--	1.0 D + 1.0 L (All Spans)	
Shear (lbs)	419 @ 1' 3/4"	2025	Passed (21\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
Moment (Ft-lbs)	2106 @ 9' 1 1/2"	2729	Passed (77\%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.332 @ 9' 1 1/2"	0.450	Passed (L/651)	--	1.0 D + 1.0 L (All Spans)	
Total Load Defl. (in)	0.431 @ 9' 1 1/2"	0.900	Passed (L/501)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)	
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A	

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Hanger on Single 2X HF plate	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	110	365	475	See note $^{1}{ }^{1}$
2 - Hanger on Single 2X HF plate	$1.500^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	110	365	475	See note $^{1}{ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6 ' o/c	
Bottom Edge (Lu)	$18^{\prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Top Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $18^{\prime} 3^{\prime \prime}$	$12^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, J5-Entry Floor J oist, 12'-0"
1 piece(s) 2×8 DF No. 1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$433 @ 2 "$	$1823\left(3.00^{\prime \prime}\right)$	Passed (24\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$374 @ 101 / 4^{\prime \prime}$	1305	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1283 @ 6^{\prime} 3^{\prime \prime}$	1511	Passed (85\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.325 @ 6^{\prime} 3^{\prime \prime}$	0.406	Passed (L/450)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.422 @ 6^{\prime} 3^{\prime \prime}$	0.608	Passed (L/346)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Beam - HF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	100	333	433	
2- Beam - HF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50^{\prime \prime}$	100	333	433	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 9{ }^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 66^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 6^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B1 - Garage Floor Beam, 9'-0"

1 piece(s) 4×12 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2348 @ 2"	7656 (3.50")	Passed (31\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1746 @ 1^{\prime} 23 / 4^{\prime \prime}$	4725	Passed (37\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$5240 @ 4^{\prime} 91 / 2^{\prime \prime}$	6091	Passed (86\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.059 @ 44^{\prime} 91 / 2^{\prime \prime}$	0.308	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.121 @ 44^{\prime} 91 / 2^{\prime \prime}$	0.463	Passed (L/914)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Column - HF	$3.50 "$	$3.50^{\prime \prime}$	$1.50 "$	1198	1150	2348	Blocking
2- Column - HF	$3.50 "$	$3.50^{\prime \prime}$	$1.50 "$	1198	1150	2348	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 7{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$9^{\prime} 7^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to $9^{\prime} 77^{\prime \prime}$	N/A	10.0	--	
1 - Uniform (PSF)	0 to $9^{\prime} 7^{\prime \prime}(T o p)$	6^{\prime}	40.0	40.0	Floor w/ Topping

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B2-Office Flush Beam, Grid A
1 piece(s) 5 1/8" $\times 15^{\prime \prime}$ 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$8646 @ 4 "$	$18322\left(5.50{ }^{\prime \prime}\right)$	Passed (47\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$6185 @ 1^{\prime} 81 / 2^{\prime \prime}$	13581	Passed (46\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	27666 @ 7' $7^{\prime \prime}$	38438	Passed (72\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.141 @ 7^{\prime} 7^{\prime \prime}$	0.363	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.437 @ 7^{\prime} 7^{\prime \prime}$	0.725	Passed (L/398)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=14^{\prime} 6^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Column - HF	5.50"	5.50"	2.60"	5860	2123	1593	8646	None
2 - Column - HF	5.50 "	5.50"	2.60 "	5860	2123	1593	8646	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$15^{\prime} 2^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$15^{\prime} 2^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 15' ${ }^{\prime \prime}$	N/A	18.7	--	--	
1 - Uniform (PSF)	0 to 15' 2" (Front)	71	12.0	40.0	-	Floor
2 - Uniform (PSF)	0 to 15' 2" (Top)	71	20.0	-	30.0	Roof
3 - Uniform (PLF)	0 to 15' 2" (Top)	N/A	530.0	$\stackrel{-}{-}$	-	Wall w/ veneer

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, B3-Bedroom 2 Window Header, Grid 1

1 piece(s) 3 1/8" x 10 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4349 @ $11 / 2^{\prime \prime}$	$6094(3.00$ ")	Passed (71\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	$4205 @ 11^{\prime} 11 / 2^{\prime \prime}$	5797	Passed (73\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	7899 @ 2^{\prime}	11484	Passed (69\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.170 @ 5^{\prime} 43 / 4^{\prime \prime}$	0.306	Passed (L/866)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.350 @ 5^{\prime} 81 / 2^{\prime \prime}$	0.613	Passed (L/420)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=12^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Trimmer - HF	3.00"	3.00"	2.14"	1757	2592	4349	None
2 - Trimmer - HF	3.00 "	3.00"	$1.50{ }^{\prime \prime}$	973	468	1441	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 6{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$12^{\prime} 66^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0-Self Weight (PLF)	0 to $12^{\prime} 6^{\prime \prime}$	N/A	8.0	--	
1- Uniform (PLF)	0 to $12^{\prime} 6^{\prime \prime}$ (Top)	N/A	120.0	-	Glazing
2 - Point (lb)	2' (Front) 2	N/A	1130	3060	Deck Beam

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B4 - Kitchen Flush Beam, Grid 1
2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4335 @ 1 1/2"	7613 (3.00")	Passed (57\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	4203 @ 1' 2 1/4"	7481	Passed (56\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	7927 @ 8' 9"	16137	Passed (49\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.221 @ 8' 9"	0.431	Passed (L/936)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.581 @ 8' 9"	0.863	Passed (L/356)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Factored	Accessories	
	Tol	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.71^{\prime \prime}$	1875	2460	4335
None							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 6 \mathrm{o} \circ \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $17^{\prime} 6^{\prime \prime}$	N / A	11.5	--	
1 - Uniform (PLF)	0 to $17^{\prime} 6^{\prime \prime}($ Top)	N / A	100.0	-	Glazing
2 - Point (Ib)	$1^{\prime} 3^{\prime \prime}($ (Top)	N / A	900	2460	Post Above
3 - Point (Ib)	$16^{\prime} 3^{\prime \prime}(T o p)$	N / A	900	2460	Post Above

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Main Floor, B5-Deck Flush Beam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$6380 @ 11 / 2^{\prime \prime}$	$11419\left(3.00^{\prime \prime}\right)$	Passed (56\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Shear (lbs)	$5371 @ 10^{\prime} 73 / 4^{\prime \prime}$	11222	Passed (48\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$18001 @ 5^{\prime} 1011 / 16^{\prime \prime}$	24206	Passed (74\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Live Load Defl. (in)	$0.289 @ 5^{\prime} 115 / 8^{\prime \prime}$	0.292	Passed (L/486)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.389 @ 5^{\prime} 115 / 16^{\prime \prime}$	0.584	Passed (L/360)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240)

- Overhang deflection criteria: $\operatorname{LL}(2 L / 480)$ and $T L(2 L / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Column - HF	$3.00 "$	$3.00 "$	$1.68^{\prime \prime}$	1725	$4656 /-219$	6380	None
2- Column - HF	$5.50 "$	$5.50 "$	$2.47^{\prime \prime}$	2634	6776	9410	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $14^{\prime} 41 / 2^{\prime \prime}$	N / A	17.2	--	
1 - Uniform (PSF)	0 to $14^{\prime} 41 / 2^{\prime \prime}$ (Top)	13^{\prime}	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

Main Floor, B6-Deck Flush Beam

3 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4468 @ 11 / 2^{\prime \prime}$	$11419\left(3.00^{\prime \prime}\right)$	Passed (39\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$3572 @ 1^{\prime} 21 / 4^{\prime \prime}$	11222	Passed (32\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$12666 @ 5^{\prime} 11^{\prime \prime}$	24206	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.193 @ 5^{\prime} 11^{\prime \prime}$	0.290	Passed (L/719)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.270 @ 5^{\prime} 11^{\prime \prime}$	0.579	Passed (L/514)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Factored	Accessories	
1- Column - HF	$3.00^{\prime \prime}$	$3.00^{\prime \prime}$	$1.50 "$	1273	3195	4468	None
2 - Column - HF	$5.50 "$	$5.50^{\prime \prime}$	$1.50 "$	1318	3308	4626	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 1^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 1^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $12^{\prime} 1 / 2^{\prime \prime}$	N / A	17.2	--	
1 - Uniform (PSF)	0 to $12^{\prime} 1 / 2^{\prime \prime}(\mathrm{Top})$	9^{\prime}	22.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$7422 @ 31 / 2^{\prime \prime}$	16656 (5.00")	Passed (45\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$6048 @ 11^{\prime \prime}$	13581	Passed (45\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$31270 @ 9^{\prime}$	38299	Passed (82\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.495 @ 9^{\prime}$	0.581	Passed (L/422)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.658 @ 99^{\prime}$	0.871	Passed (L/318)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=17^{\prime} 5^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Column - HF	$5.00 "$	$5.00^{\prime \prime}$	$2.23^{\prime \prime}$	1842	5580	7422	None
2 - Column - HF	$5.00 "$	$5.00 "$	$2.23^{\prime \prime}$	1842	5580	7422	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$18^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$18^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 18^{\prime}	N / A	18.7	--	
1 - Uniform (PSF)	0 to $18^{\prime}(\mathrm{Top})$	$15^{\prime} 6^{\prime \prime}$	12.0	40.0	Floor

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) 957-3906	
MSkotheim@quantumce.com	

1 piece(s) 6×6 DF No. 1

Post Height: 8'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35\%)	--	--
Compression (lbs)	12264	24796	Passed (49\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Base Bearing (lbs)	12461	898425	Passed (1\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	N/A	1	Passed (N/A)	--	N/A

- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.

Supports	Type	Material
Base	Plate	Steel

Member Type : Free Standing Post
Building Code : IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
Full Member Length	No bracing assumed.

Drawing is Conceptual

Vertical Loads	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1-Point (Ib)	3870	2262	885	Linked from: B1 - Existing Garage Header, 9'-6", Support 1
2- Point (Ib)	3870	2262	885	Linked from: B1 - Existing Garage Header, 9'-6", Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (33\%)	--	--
Compression (lbs)	18167	28163	Passed (65\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Plate Bearing (lbs)	18167	18906	Passed (96\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Lateral Reaction (lbs)	41	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	36	5485	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	79 @ mid-span	4437	Passed (2\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	0.05 @ mid-span	0.76	Passed (L/1925)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	0.85	1	Passed (85\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Type	Material
Top	Dbl 2 X	Douglas Fir-Larch
Base	2 X	Douglas Fir-Larch

System : Wall
Member Type : Column
Building Code: IBC 2018
Design Methodology : ASD

Lateral Connections Supports Connector Type/ Model Quantity Connector Nailing Top Nails Nails $\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$ 2 N/A Base $8 d\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$ 2 N/A

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top plate assembly.

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow (1.15)	Comments
1 - Point (lb)	N/A	8144	7832	5532	Steel Beam

Lateral Load	Location	Tributary Width	Wind (1.60)	Comments
1 - Uniform (PSF)	Full Length	$1 '$	18.1	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

1 piece(s) 6×6 DF No. 1

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (33\%)	--	--
Compression (lbs)	11240	28163	Passed (40\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	11240	12251	Passed (92\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	41	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	36	5485	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	79 @ mid-span	4437	Passed (2\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	$0.03 @$ mid-span	0.76	Passed (L/3261)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	0.38	1	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Lateral Connections				
Supports	Connector	Type/ Model	Quantity	Connector Nailing
Top	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top assembly.

Vertical Loads	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1- Point (lb)	N/A	1100	1200	Deck Roof Beam
2 - Point (lb)	N/A	5659	3281	Linked from: RB - Living Room Roof Beam, Grid B, Support 1

Lateral Load	Location	Tributary Width	$\begin{aligned} & \text { Wind } \\ & (1.60) \end{aligned}$	Comments
1 - Uniform (PSF)	Full Length	$1 '$	18.1	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

1 piece(s) 4×6 HF No. 2

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	32	50	Passed (64\%)	--	--
Compression (lbs)	2457	6917	Passed (36\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Plate Bearing (lbs)	2457	7796	Passed (32\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$
Lateral Reaction (lbs)	73	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	68	3080	Passed (2\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	267 @ mid-span	2558	Passed (10\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	0.14 @ mid-span	1.46	Passed (L/1225)	--	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Bending/Compression	0.28	1	Passed (28\%)	1.60	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Lateral Connections				
Supports	Connector	Type/ Model	Quantity	Connector Nailing
Top	Nails	8d $\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	$\mathrm{~N} / \mathrm{A}$
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	$\mathrm{~N} / \mathrm{A}$

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top assembly

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1 - Point (lb)	N/A	1692	765	Linked from: RB - Living Room Flush Beam, Grid 3, Support 1

Lateral Load	Location	Tributary Width	$\begin{gathered} \text { Wind } \\ (1.60) \end{gathered}$	Comments
1 - Uniform (PSF)	Full Length	1^{\prime}	16.6	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35\%)	--	--
Compression (lbs)	13834	37262	Passed (37\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Plate Bearing (lbs)	13834	16706	Passed (83\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Lateral Reaction (lbs)	48	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	42	7480	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	111 @ mid-span	8193	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	0.03 @ mid-span	0.91	Passed (L/3828)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	0.32	1	Passed (32\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Lateral Connections						
Supports	Connector	Type/ Model	Quantity	Connector Nailing		
Top	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top plate assembly.

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0})$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Point (lb)	N/A	7107	2297	6672	Linked from: B12 - Deck Edge Beam, Grid D, Support 2

Lateral Load	Location	Tributary Width	Wind $\mathbf{(1 . 6 0)}$	Comments
1 - Uniform (PSF)	Full Length	1^{\prime}	17.7	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Maxwell Skotheim
Quantum Consulting Engineers
(206) 957-3906
(206) 957-3906

MSkotheim@quantumce.com

Weyerhaeuser

Basement, BP1 - Basement Wall Post

1 piece(s) 6×8 DF No. 1

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (35\%)	--	--
Compression (lbs)	16520	37262	Passed (44\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Plate Bearing (lbs)	16520	16706	Passed (99\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Lateral Reaction (lbs)	51	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	44	7480	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	122 @ mid-span	8193	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	0.04 @ mid-span	0.96	Passed (L/3061)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$
Bending/Compression	0.43	1	Passed (43\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension.
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System: Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Lateral Connections						
Supports	Connector	Type/ Model	Quantity	Connector Nailing		
Top	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top plate assembly.

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Point (Ib)	N/A	8000	4360	7000	Post Above

Lateral Load	Location	Tributary Width	Wind $\mathbf{(1 . 6 0)}$	Comments
1-Uniform (PSF)	Full Length	1^{\prime}	17.6	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Maxwell Skotheim
Quantum Consulting Engineers
(206) $957-3906$
(206) 957-3906

MSkotheim@quantumce.com

Weyerhaeuser

Basement, BP2 - Basement Corner Wall Post

1 piece(s) 6×6 DF No. 1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (42\%)	--	--
Compression (lbs)	6400	21697	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Plate Bearing (lbs)	6400	12251	Passed (52\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Lateral Reaction (lbs)	51	--	--	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Shear (lbs)	46	5485	Passed (1\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Moment (ft-lbs)	122 @ mid-span	4437	Passed (3\%)	1.60	$1.0 \mathrm{D}+0.6 \mathrm{~W}$
Total Deflection (in)	$0.03 @$ mid-span	0.96	Passed (L/3990)	--	$1.0 \mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{~L}+0.75 \mathrm{Lr}$
Bending/Compression	0.22	1	Passed (22\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for this design is 10% of applicable member side dimension
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Type	Material
Top	Dbl 2 X	Hem Fir
Base	2 X	Hem Fir

System : Wall
Member Type : Column
Building Code : IBC 2018
Design Methodology : ASD

Drawing is Conceptual

Lateral Connections						
Supports	Connector	Type/ Model	Quantity	Connector Nailing		
Top	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		
Base	Nails	$8 \mathrm{~d}\left(0.113^{\prime \prime} \times 21 / 2^{\prime \prime}\right)($ Toe $)$	2	N/A		

- Nailed connection at the top of the member is assumed to be nailed through the bottom $2 x$ plate prior to placement of the top $2 x$ of the double top plate assembly.

Vertical Load	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Point (Ib)	N/A	1720	4680	Deck Beam

Lateral Load	Location	Tributary Width	Wind $\mathbf{(1 . 6 0)}$	Comments
1 - Uniform (PSF)	Full Length	1^{\prime}	17.6	

- ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (97), Risk Category(II), Effective Wind Area
determined using full member span and trib. width.
- IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
Maxwell Skotheim
Quantum Consulting Engineers
(206) 957-3906
(206) 957-3906

MSkotheim@quantumce.com

Weyerhaeuser

Basement, BP3 - Deck Post

1 piece(s) 6×6 DF No. 1

Post Height: 10' 6"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46\%)	--	--
Compression (lbs)	9410	19871	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Base Bearing (lbs)	9410	898425	Passed (1\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$
Bending/Compression	N/A	1	Passed (N/A)	--	N/A

- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.

Supports	Type	Material
Base	Plate	Steel

Member Type : Free Standing Post
Building Code : IBC 2018
Design Methodology : ASD

Max Unbraced Length	Comments
Full Member Length	No bracing assumed.

Drawing is Conceptual

Vertical Load	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1- Point (Ib)	2634	6776	Linked from: B5 - Deck Flush Beam, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202E

DESCRIPTION: Roof RB6 - Steel Beam over Master Bedroom, 31ft

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield:	50.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load: $\mathrm{D}=0.020, \mathrm{~S}=0.030 \mathrm{ksf}$, Tributary Width $=12.50 \mathrm{ft}$, (Roof)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.391 : 1	Maximum S	hear Stress Ratio =	0.110:1
Section used for this span	W10x68	Sect	on used for this span	W10x68
Ma : Applied	$83.256 \mathrm{k}-\mathrm{ft}$		Va : Applied	10.743 k
Mn / Omega : Allowable	212.824 k-ft		Vn/Omega : Allowable	97.760 k
Load Combination	+D+S	Load	Combination ion of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{S} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.685 in Ratio $=$	542 >=360.	Span: 1 : S Only	
Max Upward Transient Deflection	0 in Ratio =	$0<360.0$	n/a	
Max Downward Total Deflection	1.266 in Ratio =	$294>=240$.	Span: 1 : +D+S	
Max Upward Total Deflection	0 in Ratio =	$0<240.0$	n/a	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	x/Omega Cb	Rm	Va Max	VnxVnx	nega
D Only												
Dsgn. L = 30.91 ft	1	0.180	0.050	38.21		38.21	355.42	212.821 .00	1.00	4.93	146.64	97.76
Dsgn. $\mathrm{L}=0.09 \mathrm{ft}$	1	0.002	0.050	0.44		0.44	355.42	212.821 .00	1.00	4.93	146.64	97.76
+D+S												
Dsgn. L = 30.91 ft	1	0.391	0.110	83.26		83.26	355.42	212.821 .00	1.00	10.74	146.64	97.76
Dsgn. $\mathrm{L}=0.09 \mathrm{ft}$	1	0.004	0.110	0.95		0.95	355.42	212.821 .00	1.00	10.74	146.64	97.76
+D+0.750S												
Dsgn. L = 30.91 ft	1	0.338	0.095	71.99		71.99	355.42	212.821 .00	1.00	9.29	146.64	97.76
Dsgn. $\mathrm{L}=0.09 \mathrm{ft}$	1	0.004	0.095	0.82		0.82	355.42	212.821 .00	1.00	9.29	146.64	97.76
+0.60D												
Dsgn. L = 30.91 ft	1	0.108	0.030	22.93		22.93	355.42	212.821 .00	1.00	2.96	146.64	97.76
Dsgn. $\mathrm{L}=0.09 \mathrm{ft}$	1	0.001	0.030	0.26		0.26	355.42	212.821 .00	1.00	2.96	146.64	97.76

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl
$+\mathrm{L}+\mathrm{S}$	1	1.2662	15.589	0.0000	
Vertical Reactions			Support notation : Far left is \#	0.000	
Load Combination		Support 1	Support 2	Values in KIPS	
Max Upward from all Load Conditions	10.743	10.743			
Max Upward from Load Combinations	10.743	10.743			
Max Upward from Load Cases	5.813	5.813			

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS (c) ENERCALC INC 1983-202ミ
DESCRIPTION: Roof RB6 - Steel Beam over Master Bedroom, 31ft

Vertical Reactions	Support notation : Far left is \#	
Load Combination	Support 1	Support 2
D Only	4.930	4.930
+D + S	10.743	10.743
+D +0.750 S	9.290	9.290
+0.60D	2.958	2.958
S Only	5.813	5.813

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202:

DESCRIPTION: Roof RB7-Steel Beam over Deck, 31ft

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield:	50.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

Beam self weight calculated and added to loading
Uniform Load : $\mathrm{D}=0.020, \mathrm{~S}=0.030 \mathrm{ksf}$, Tributary Width $=3.750 \mathrm{ft}$, (Roof)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.274 : 1	Maximum	hear Stress Ratio =	0.061 : 1
Section used for this span	W10x33	Section	on used for this span	W10x33
Ma : Applied	26.494 k-ft		Va: Applied	3.419 k
Mn / Omega : Allowable	96.806 k-ft		Vn/Omega : Allowable	56.434 k
Load Combination	+D+S	Load	Combination ion of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{S} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.473 in Ratio $=$	785 >=240.	Span: 1 : S Only	
Max Upward Transient Deflection	0 in Ratio =	$0<240.0$	n/a	
Max Downward Total Deflection	0.928 in Ratio $=$	$401>=180$	Span: 1 : +D+S	
Max Upward Total Deflection	0 in Ratio $=$	$0<180$	n/a	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values					Summary of Shear Values		
		M	V	$\overline{M m a x}+$	Mmax -	Ma Max	Mnx Mn	mega Cb Rm	Va Max	VnxVnx	nega
D Only											
Dsgn. L $=30.91 \mathrm{ft}$	1	0.134	0.030	12.98		12.98	161.67	96.811 .001 .00	1.67	84.65	56.43
Dsgn. L $=0.09 \mathrm{ft}$	1	0.002	0.030	0.15		0.15	161.67	96.811 .001 .00	1.67	84.65	56.43
+D+S											
Dsgn. L $=30.91 \mathrm{ft}$	1	0.274	0.061	26.49		26.49	161.67	96.811 .001 .00	3.42	84.65	56.43
Dsgn. $\mathrm{L}=0.09 \mathrm{ft}$	1	0.003	0.061	0.30		0.30	161.67	96.811 .001 .00	3.42	84.65	56.43
+D+0.750S											
Dsgn. L $=30.91 \mathrm{ft}$	1	0.239	0.053	23.12		23.12	161.67	96.811 .001 .00	2.98	84.65	56.43
Dsgn. L = 0.09 ft	1	0.003	0.053	0.26		0.26	161.67	96.811 .001 .00	2.98	84.65	56.43
+0.60D											
Dsgn. L = 30.91 ft	1	0.080	0.018	7.79		7.79	161.67	96.811 .001 .00	1.00	84.65	56.43
Dsgn. L = 0.09 ft	1	0.001	0.018	0.09		0.09	161.67	96.811 .001 .00	1.00	84.65	56.43

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl
$+D+S$	1	0.9284	15.589	0.0000	0.000
Vertical Reactions			Support notation : Far left is \#	Values in KIPS	
Load Combination	Support 1	Support 2			
Max Upward from all Load Conditions	3.419	3.419			
Max Upward from Load Combinations	3.419	3.419			
Max Upward from Load Cases	1.744	1.744			

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25 QUANTUM CONSULTING ENGINEERS (c) ENERCALC INC 1983-202
DESCRIPTION: Roof RB7-Steel Beam over Deck, 31ft

Vertical Reactions	Support notation : Far left is \#	
Load Combination	Support 1	Support 2
D Only	1.675	1.675
+D+S	3.419	3.419
+D+0.750S	2.983	2.983
+0.60D	1.005	1.005
S Only	1.744	1.744

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202€

DESCRIPTION: Upper Floor UB2a - Floor Steel Beam over Garage, 32'-0"

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield :	50.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load : $\mathrm{D}=0.0120$, L $=0.040 \mathrm{ksf}$, Extent $=9.0$-->> 32.0 ft , Tributary Width $=12.0 \mathrm{ft}$, (Floor)
Uniform Load : D = 0.0480 ksf, Extent $=0.0$-->> 9.0 ft , Tributary Width $=11.0 \mathrm{ft}$, (Wall w/veneer)
Uniform Load : $\mathrm{D}=0.0120$, L $=0.040 \mathrm{ksf}$, Extent $=0.0$-->> 9.0 ft , Tributary Width $=6.0 \mathrm{ft}$, (Floor)
Uniform Load : $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Extent $=0.0$-->> 9.0 ft , Tributary Width $=6.0 \mathrm{ft}$, (Roof Deck)
Uniform Load: D $=0.020, \mathrm{~S}=0.030 \mathrm{ksf}$, Extent $=9.0--\gg 32.0 \mathrm{ft}$, Tributary Width $=12.0 \mathrm{ft},($ Roof $)$
Uniform Load: $D=0.020, S=0.030 \mathrm{ksf}$, Extent $=0.0--\gg 9.0 \mathrm{ft}$, Tributary Width $=6.0 \mathrm{ft}$, (Roof)

DESIGN SUMMARY										Design OK		
Maximum Bending Stress Ratio =Section used for this span			0.531: 1		Maximum Shear Stress Ratio =					0.160 : 1		
			W10x88		Section used for this span					W10x88		
Ma : Applied			$149.751 \mathrm{k}-\mathrm{ft}$		Va: Applied					20.904 k		
Mn / Omega : Allowable			281.936 k-ft		Vn/Omega : Allowable					130.680 k		
Load Combination			D+0.750L+0.750S		Load Combination					+D+0.750L+0.750S		
			Location of maximum on span						0.000			
Span \# where maximum occurs								Span \# 1		Span \# 1		
Maximum Deflection												
Max Downward Transient Deflection			0.767 in Ratio $=$		500 >=240. Span: 1: L Only							
Max Upward Transient Deflection			0 in Ratio =		$0<240.0$							
Max Downward Total Deflection			1.803 in Ratio $=$			>=180	Span: 1 : +D+0.750L+0.750S					
Max Upward Tota	Deflectio			in Ratio $=$	0	<180						
Maximum Forces \& Stresses for Load Combinations												
Load Combination		Max Stress Ratios			Summary of Moment Values					Summary of Shear Values		
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	x/Omega Cb	Rm	Va Max	VnxVnx/	mega
D Only												
Dsgn. L = 32.00 ft	1	0.249	0.085	70.26		70.26	470.83	281.941 .00	1.00	11.17	196.02	130.68
+D+L												
Dsgn. $\mathrm{L}=32.00 \mathrm{ft}$	1	0.475	0.151	134.05		134.05	470.83	281.941 .00	1.00	19.78	196.02	130.68
+D+S												
Dsgn. L $=32.00 \mathrm{ft}$	1	0.399	0.119	112.41		112.41	470.83	281.941 .00	1.00	15.54	196.02	130.68
+D+0.750L												
Dsgn. L = 32.00 ft	1	0.419	0.135	118.09		118.09	470.83	281.941 .00	1.00	17.63	196.02	130.68

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6	
LIC\#: :KW-06016450, Build:20.23.055.25	QUANTUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-202:
DESCRIPTION: Upper Floor UB2a - Floor Steel Beam over Garage, 32'-0"		

DESCRIPTION: Upper Floor UB2a - Floor Steel Beam over Garage, 32'-0"
Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	Omega Cb	Rm	Va Max	VnxVnx	Omega
+D+0.750L+0.750S												
Dsgn. $\mathrm{L}=32.00 \mathrm{ft}$	1	0.531	0.160	149.75		149.75	470.83	281.941 .00	1.00	20.90	196.02	130.68
+0.60D												
Dsgn. L = 32.00 ft	1	0.150	0.051	42.16		42.16	470.83	281.941 .00	1.00	6.70	196.02	130.68

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl Location in Span
+D+0.750L+0.750S	1	1.8033	15.909	0.0000	0.000
Vertical Reactions			Support notation : Far left is \#	Values in KIPS	
Load Combination	Support 1	Support 2			
Max Upward from all Load Conditions	20.904	18.167			
Max Upward from Load Combinations	20.904	18.167			
Max Upward from Load Cases	11.172	8.144			
D Only	11.172	8.144			
+D+L	19.780	15.976			
+D+S	15.540	13.677			
+D+0.750L	17.628	14.018			
+D+0.750L+0.750S	20.904	18.167			
+0.60D	6.703	4.887			
L Only	8.608	7.832			
S Only	4.368	5.532			

Project Title:
Engineer:
Project ID:
Project Descr:

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Upper Floor UB2b - Floor Beam over Utility, 9'-4"

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method: Load Combination	Allowable Stress Design	$\mathrm{Fb}+$	2600 psi	E : Modulus of Elasticity	
	IBC 2018	Fb -	2600 psi	Ebend- xx	1900ksi
		Fc-Prll	2510 psi	Eminbend - xx	965.71 ksi
Wood Species	iLevel Truss Joist	Fc-Perp	750 psi		
Wood Grade	MicroLam LVL 1.9 E	Fv	285 psi		
m		Ft	1555 psi	Density	42.01 pcf

Applied Loads

Service loads entered. Load Factors will be applied for calculations
Beam self weight calculated and added to loading
Uniform Load: $\mathrm{D}=0.0120$, $\mathrm{L}=0.040 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$, (Floor)
Uniform Load: $\mathrm{D}=0.020, \mathrm{~S}=0.030 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$, (Roof)
Uniform Load : D = 0.0480 ksf , Tributary Width $=11.0 \mathrm{ft}$, (Wall w/ veneer)
Uniform Load: $D=0.0330, S=0.030 \mathrm{ksf}$, Tributary Width $=5.50 \mathrm{ft}$, (Roof Deck)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	0.739: 1	Maximum	hear Stress Ratio	$=$	0.565 : 1
Section used for this span	2-1.75x11.87	Sectio	used for this span		2-1.75x11.87
fb : Actual	2,213.75psi		fv: Actual	=	185.10 psi
F'b	2,994.26psi		F'v	=	327.75 psi
Load Combination	+D+0.750L+0.750S	Load	ombination		+D+0.750L+0.750S
Location of maximum on span	4.665 ft	Locati	n of maximum on span	=	8.343 ft
Span \# where maximum occurs	Span \# 1	Span	where maximum occurs	=	Span \# 1
Maximum Deflection					
Max Downward Transient Deflection	0.067 in Ratio $=$	$1682>=360$	Span: 1 : S Only		
Max Upward Transient Deflection	0 in Ratio =	$0<360$	n/a		
Max Downward Total Deflection	0.258 in Ratio $=$	$434>=180$	Span: 1 : +D+0.750L+0.7		
Max Upward Total Deflection	0 in Ratio $=$	$0<180$	n/a		

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Max Stress Ratios					C_{t} CLx		C_{F}	Cfu	C	Moment Values				Shear Values			
	Span \#	M	V	$C D$	CM			C_{r}			M	fb	F'b	V	$f v$	F'v		
D Only															0.0	0.00	0.0	0.0
Length $=9.330 \mathrm{ft}$	1	0.630	0.481	0.90	1.00	1.00	1.00	1.001	1.00	1.00	1.00	10.12	1,475.6	2,343.3	3.42	123.4	256.5	
+D+L					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0	
Length $=9.330 \mathrm{ft}$	1	0.725	0.554	1.00	1.00	1.00	1.00	1.001	1.00	1.00	1.00	12.94	1,888.3	2,603.7	4.37	157.9	285.0	
+D+S					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0	
Length $=9.330 \mathrm{ft}$	1	0.684	0.522	1.15	1.00	1.00	1.00	1.001	1.00	1.00	1.00	14.03	2,047.1	2,994.3	4.74	171.2	327.8	
+D+0.750L					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0	
Length $=9.330 \mathrm{ft}$	1	0.548	0.419	1.25	1.00	1.00	1.00	1.001	1.00	1.00	1.00	12.24	1,785.2	3,254.6	4.14	149.3	356.3	

Project Title:
Engineer:
Project ID:
Project Descr:
Wood Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202E

DESCRIPTION: Upper Floor UB2b - Floor Beam over Utility, 9'-4"
Maximum Forces \& Stresses for Load Combinations

Load Combination	Max Stress Ratios									Moment Values					Shear Values		
Segment Length	Span \#	M	V	$C D$	CM	C_{t}	CLx	C_{F}	Cfu	C	$\mathrm{C}_{\text {r }}$	M	fb	F'b	V	fv	F'v
+D+0.750L+0.750S					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length $=9.330 \mathrm{ft}$	1	0.739	0.565	1.15	1.00	1.00	1.00	1.001	1.00	1.00	1.00	15.18	2,213.7	2,994.3	5.13	185.1	327.8
+0.60D					1.00	1.00	1.00	1.001	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length $=9.330 \mathrm{ft}$	1	0.213	0.162	1.60	1.00	1.00	1.00	1.001	1.00	1.00	1.00	6.07	885.4	4,165.9	2.05	74.0	456.0

Overall Maximum Deflections

Load Combination Span	Max. "-" Defl Loca	ation in Span Load Combination	Max. "+" Defl Location in Span
+D+0.750L+0.750S	0.2577	4.699	0.00000 .000
Vertical Reactions	Support notation : Far left is \#1		Values in KIPS
Load Combination	Support 1 Support 2		
Max Upward from all Load Conditions	6.506	6.506	
Max Upward from Load Combinations	6.506	6.506	
Max Upward from Load Cases	4.337	4.337	
D Only	4.337	4.337	
+D+L	5.550	5.550	
+D+S	6.016	6.016	
+D+0.750L	5.246	5.246	
+D+0.750L+0.750S	6.506	6.506	
+0.60D	2.602	2.602	
L Only	1.213	1.213	
S Only	1.679	1.679	

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202:

DESCRIPTION: Upper Floor UB6 - Floor Steel Beam, 30'-9"

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield:	50.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus:	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading
Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width $=10.250 \mathrm{ft}$, (Floor)

Point Load: D = 1.320, L = 2.0 k @ 0.750 ft, (Deck Beam)

Point Load : D = 1.320, L = $2.0 \mathrm{k} @ 13.250 \mathrm{ft}$, (Deck Beam)

Maximum Forces \& Stresses for Load Combinations

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6
LIC\#:KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEERS
DESCRIPTION: Upper Floor UB6 - Floor Steel Beam, 30'-9"	(c) ENERCALC INC 1983-202:

Vertical Reactions	Support notation : Far left is \#	
Load Combination	Support 1	Support 2
Max Upward from Load Cases	9.393	7.214
D Only	4.976	3.538
+D+L	14.369	10.752
+D+0.750L	12.021	8.948
+0.60D	2.985	2.123
L Only	9.393	7.214

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Upper Floor UB8 - Flush Header at Kitchen Window , 15'-4"

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield:	46.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

($\mathrm{D}(0.1074) \mathrm{L}(0.2928)$

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load: D = 0.0220, L = 0.060 ksf, Tributary Width $=4.880 \mathrm{ft}$, (Deck)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.313 : 1	Maximum S	hear Stress Ratio =	0.048:1
Section used for this span	HSS7x5x3/8	Sec	on used for this span	HSS7x5x3/8
Ma : Applied	$12.567 \mathrm{k}-\mathrm{ft}$		Va : Applied	3.279 k
Mn / Omega : Allowable	$40.170 \mathrm{k}-\mathrm{ft}$		Vn/Omega : Allowable	68.673 k
Load Combination	+D+L		Combination ion of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{L} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.255 in Ratio $=$	722 >=360.	Span: 1 : L Only	
Max Upward Transient Deflection	0 in Ratio =	$0<360.0$	n/a	
Max Downward Total Deflection	0.372 in Ratio =	$494>=240$.	Span: 1 : +D+L	
Max Upward Total Deflection	0 in Ratio =	$0<240.0$	n/a	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	Omega Cb	Rm	Va Max	VnxVnx	nega
D Only												
Dsgn. L = 15.33 ft	1	0.099	0.015	3.96		3.96	67.08	40.171 .00	1.00	1.03	114.68	68.67
+D+L												
Dsgn. L = 15.33 ft	1	0.313	0.048	12.57		12.57	67.08	40.171 .00	1.00	3.28	114.68	68.67
+D+0.750L												
Dsgn. L = 15.33 ft	1	0.259	0.040	10.42		10.42	67.08	40.171 .00	1.00	2.72	114.68	68.67
+0.60D												
Dsgn. L = 15.33 ft	1	0.059	0.009	2.38		2.38	67.08	40.171 .00	1.00	0.62	114.68	68.67
Overall Maximum Deflections												

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl Location in Span
$+D+L$	1	0.3722	7.710	0.0000	0.000
Vertical Reactions			Support notation : Far left is \#	Values in KIPS	
Load Combination	Support 1	Support 2			
Max Upward from all Load Conditions	3.279	3.279			
Max Upward from Load Combinations	3.279	3.279			
Max Upward from Load Cases	2.245	2.245			
D Only	1.034	1.034			
+D+L	3.279	3.279			
+D+0.750L	2.717	2.717			
+0.60D	0.620	0.620			

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam		Project File: Hong Kao.ec6
LIC\# : KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-202:
DESCRIPTION: Upper Floor UB8 - Flush Header at Kitchen Window , 15'-4'		
Vertical Reactions	Support notation : Far left is \#*	Values in KIPS
Load Combination	Support 1 Support 2	
L Only	$2.245 \quad 2.245$	

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202€

DESCRIPTION: Upper Floor UB9 - Flush Header at Kitchen Window , 17'-0"

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield:	46.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

$\underset{\sim}{\mathrm{D}(\mathrm{O} .07150) \mathrm{L}(0.1950)}$

Applied Loads

Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load: $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Extent $=2.0$-->> 17.50 ft , Tributary Width $=1.750 \mathrm{ft}$, (Deck)
Uniform Load : D $=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Extent $=0.0$-->> 2.0 ft , Tributary Width $=3.250 \mathrm{ft}$, (Deck)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.220: 1	Maximum	ear Stress Ratio =	0.025 : 1
Section used for this span	HSS7x3x3/8		on used for this span	HSS7x3x3/8
Ma : Applied	$6.473 \mathrm{k}-\mathrm{ft}$		Va : Applied	1.683 k
Mn / Omega : Allowable	29.381 k-ft		Vn/Omega : Allowable	68.673 k
Load Combination	+D+L		Combination	+D+L
			on of maximum on span	0.000 ft
Span \# where maximum occurs	Span \# 1	Spa	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.231 in Ratio $=$	$908>=360$.	Span: 1 : L Only	
Max Upward Transient Deflection	0 in Ratio =	$0<360.0$	n/a	
Max Downward Total Deflection	0.364 in Ratio $=$	$577>=240$.	Span: 1 : +D+L	
Max Upward Total Deflection	0 in Ratio $=$	$0<240.0$		

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values					Summary of Shear Values		
		M	V	$\overline{M m a x}+$	Mmax -	Ma Max	Mnx Mnx	Omega Cb Rm	Va Max	VnxVnx	nega
D Only $\text { Dsgn. } L=17.50 \mathrm{ft}$	1	0.080	0.009	2.36		2.36	49.07	29.381 .001 .00	0.59	114.68	68.67
+D+L											
Dsgn. $\mathrm{L}=17.50 \mathrm{ft}$	1	0.220	0.025	6.47		6.47	49.07	29.381 .001 .00	1.68	114.68	68.67
+D+0.750L											
Dsgn. L = 17.50 ft	1	0.185	0.021	5.45		5.45	49.07	29.381 .001 .00	1.41	114.68	68.67
+0.60D											
Dsgn. $\mathrm{L}=17.50 \mathrm{ft}$	1	0.048	0.005	1.42		1.42	49.07	29.381 .001 .00	0.36	114.68	68.67

Overall Maximum Deflections

Project Title:
Engineer:
Project ID:
Project Descr:

Vertical Reactions	Support notation : Far left is \#	
Load Combination	Support 1	Support 2
$+\mathrm{D}+\mathrm{L}$	1.683	1.465
$+\mathrm{D}+0.750 \mathrm{~L}$	1.411	1.233
+0.60 D	0.357	0.322
L Only	1.088	0.929

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202€

DESCRIPTION: Upper Floor UB10 - Cantilever Deck Beam, 7'-0" Cant.

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield :	46.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load : $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Extent $=2.50$-->> 8.50 ft , Tributary Width $=6.250 \mathrm{ft}$, (Deck)
Point Load : $\mathrm{D}=0.0940, \mathrm{~L}=0.3130 \mathrm{k} @ 2.50 \mathrm{ft}$, (Flush Beam)
Point Load : D $=1.520, \mathrm{~L}=1.910 \mathrm{k} @ 2.50 \mathrm{ft}$, (Flush Beam)
Load for Span Number 2
Uniform Load: $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Tributary Width $=6.250 \mathrm{ft}$, (Deck)
Load for Span Number 3
Uniform Load: $D=0.0220, L=0.060 \mathrm{ksf}$, Tributary Width $=6.250 \mathrm{ft}$, (Deck)
Point Load: D = 0.3270, L=0.8930 k @ 1.0 ft , (Flush Rim)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio	0.360 : 1	Maximum S	ear Stress Ratio =	0.073: 1
Section used for this span	HSS7x5x3/8	Secti	used for this span	HSS7x5x3/8
Ma : Applied	$14.450 \mathrm{k}-\mathrm{ft}$		Va : Applied	5.0 k
Mn / Omega : Allowable	$40.170 \mathrm{k}-\mathrm{ft}$		Vn/Omega : Allowable	68.673 k
Load Combination	+D+L		Combination on of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{L} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 2	Span	\# where maximum occurs	Span \# 3
Maximum Deflection				
Max Downward Transient Deflection	0.218 in Ratio =	770 >=360.	Span: 3 : L Only	
Max Upward Transient Deflection	-0.006 in Ratio =	4,943 >=360.	Span: 3 : L Only	
Max Downward Total Deflection	0.315 in Ratio $=$	$533>=240$.	Span: 3 : +D+L	
Max Upward Total Deflection	-0.009 in Ratio =	3340 >=240.	Span: 3 : +D+L	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	$\overline{M m a x}+$	Mmax -	Ma Max	Mnx Mnx	Omega Cb	Rm	Va Max	VnxVn	mega
D Only												
Dsgn. L $=8.50 \mathrm{ft}$	1	0.080	0.020	3.20	-1.95	3.20	67.08	40.171 .00	1.00	1.35	114.68	68.67
Dsgn. $\mathrm{L}=2.50 \mathrm{ft}$	2	0.109	0.012	-0.00	-4.37	4.37	67.08	40.171 .00	1.00	1.48	199.34	119.37
Dsgn. L $=7.00 \mathrm{ft}$	3	0.109	0.022		-4.37	4.37	67.08	40.171 .00	1.00	1.48	114.68	68.67
+D+L												
Dsgn. L = 8.50 ft	1	0.204	0.056	8.19	-5.02	8.19	67.08	40.171 .00	1.00	3.83	114.68	68.67

Project Title:
Engineer:
Project ID:
Project Descr:
Steel Beam Promect File: Hong Kazo.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Upper Floor UB10 - Cantilever Deck Beam, 7'-0" Cant.
Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length		Span \#	Max Stress Ratios		Summary of Moment Values					Summary of Shear Values			
		M	V	$\overline{M m a x}+$	Mmax -	Ma Max	Mnx Mnx/Omega Cb Rm		Va Max	VnxVnx/Omega			
Dsgn. L =	2.50 ft		2	0.360	0.042	-0.00	-14.45	14.45	67.08	40.171 .001 .00	5.00	199.34	119.37
Dsgn. L =	7.00 ft	3	0.360	0.073		-14.45	14.45	67.08	40.171 .001 .00	5.00	114.68	68.67	
+D+0.750L													
Dsgn. L =	8.50 ft	1	0.173	0.047	6.95	-4.25	6.95	67.08	40.171 .001 .00	3.21	114.68	68.67	
Dsgn. L =	2.50 ft	2	0.297	0.035	-0.00	-11.93	11.93	67.08	40.171 .001 .00	4.12	199.34	119.37	
Dsgn. L =	7.00 ft	3	0.297	0.060		-11.93	11.93	67.08	40.171 .001 .00	4.12	114.68	68.67	
+0.60D													
Dsgn. L =	8.50 ft	1	0.048	0.012	1.92	-1.17	1.92	67.08	40.171 .001 .00	0.81	114.68	68.67	
Dsgn. L =	2.50 ft	2	0.065	0.007	-0.00	-2.62	2.62	67.08	40.171 .001 .00	0.89	199.34	119.37	
Dsgn. L =	7.00 ft	3	0.065	0.013		-2.62	2.62	67.08	40.171 .001 .00	0.89	114.68	68.67	

Overall Maximum Deflections

Load Combination Span	Max. "-" Defl Lo	ocation in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L	0.0566	3.740		0.0000	0.000
2	0.0000	3.740	+D+L	-0.0090	1.367
+D+L 3	0.3152	7.000		0.0000	1.367
Vertical Reactions	Support notation : Far left is \#			Values in KIPS	
Load Combination	Support 1	Support 2 Sup	port 3 Support 4		
Max Upward from all Load Conditions	3.320	0.727	9.448		
Max Upward from Load Combinations	3.320	0.727	9.448		
Max Upward from Load Cases	2.003	0.593	6.792		
D Only	1.318	0.593	2.656		
+D+L	3.320	0.727	9.448		
+D+0.750L	2.820	0.693	7.750		
+0.60D	0.791	0.356	1.594		
L Only	2.003	0.134	6.792		

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202:

DESCRIPTION: Upper Floor UB11 - Flush Header at Kitchen Window, 13'-0"

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield :	46.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load: $D=0.0220, L=0.060 \mathrm{ksf}$, Tributary Width $=1.50 \mathrm{ft}$, (Deck)

Load for Span Number 2
Uniform Load: $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Tributary Width $=3.0 \mathrm{ft},($ Deck $)$

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.126 : 1	Maximum Shear Stress Ratio = Section used for this span		0.019:1
Section used for this span	HSS7x3x1/4			HSS7x3x1/4
Ma : Applied	$2.673 \mathrm{k}-\mathrm{f}$		Va: Applied	0.9413 k
Mn / Omega : Allowable	$21.164 \mathrm{k}-\mathrm{f}$		Vn/Omega : Allowable	48.528 k
Load Combination	+D+L	Load	Combination on of maximum on span	$\begin{gathered} +\mathrm{D}+\mathrm{L} \\ 13.000 \mathrm{ft} \end{gathered}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.071 in Ratio $=$	2,208 >=360.	Span: 2 : L Only	
Max Upward Transient Deflection	-0.031 in Ratio $=$	1,561 >=360.	Span: 2 : L Only	
Max Downward Total Deflection	0.110 in Ratio $=$	$1424>=240$.	Span: 2 : +D+L	
Max Upward Total Deflection	-0.048 in Ratio =	$999>=240$.	Span: 2 : +D+L	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values					Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	Omega Cb Rm	Va Max	VnxVnx	mega
D Only											
Dsgn. L = 13.00 ft	1	0.045	0.007	0.95	-0.16	0.95	35.34	21.161 .001 .00	0.33	81.04	48.53
Dsgn. L = 2.00 ft	2	0.008	0.003		-0.16	0.16	35.34	21.161 .001 .00	0.16	81.04	48.53
+D+L											
Dsgn. L = 13.00 ft	1	0.126	0.019	2.67	-0.52	2.67	35.34	21.161 .001 .00	0.94	81.04	48.53
Dsgn. L = 2.00 ft	2	0.025	0.011		-0.52	0.52	35.34	21.161 .001 .00	0.52	81.04	48.53
+D+0.750L											
Dsgn. L = 13.00 ft	1	0.106	0.016	2.24	-0.43	2.24	35.34	21.161 .001 .00	0.79	81.04	48.53
Dsgn. L = 2.00 ft	2	0.020	0.009		-0.43	0.43	35.34	21.161 .001 .00	0.43	81.04	48.53
+0.60D											
Dsgn. L = 13.00 ft	1	0.027	0.004	0.57	-0.10	0.57	35.34	21.161 .001 .00	0.20	81.04	48.53
Dsgn. L = 2.00 ft	2	0.005	0.002		-0.10	0.10	35.34	21.161 .001 .00	0.10	81.04	48.53

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Location in Span	Load Combination	Max. "+" Defl	Location in Span	
$+D+L$	1	0.1096	6.396		0.0000	0.000
	2	0.0000	6.396	$+D+L$	-0.0481	2.000

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6
LIC\#: KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEERS

Vertical Reactions	Support notation : Far left is \#	Values in KIPS
Load Combination	Support 1	Support 2
Support 3		
Max Upward from all Load Conditions	0.861	1.465
Max Upward from Load Combinations	0.861	1.465
Max Upward from Load Cases	0.557	0.973
D Only	0.303	0.492
+D+L	0.861	1.465
+D+0.750L	0.721	1.221
+0.60D	0.182	0.295
L Only	0.557	0.973

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202€

DESCRIPTION: Main Floor B7-Deck Beam, Grid C

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy : Steel Yield:	46.0 ksi
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads

```
Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load : \(\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}\), Extent \(=9.0\)-->> 14.50 ft , Tributary Width \(=6.50 \mathrm{ft}\), (Deck)
```

Uniform Load : $D=0.0120, L=0.040 \mathrm{ksf}$, Extent $=0.0--\gg 9.0 \mathrm{ft}$, Tributary Width $=15.0 \mathrm{ft}$, (Deck)
Point Load: D $=0.590$, L $=0.130 \mathrm{k} @ 8.670 \mathrm{ft}$, (Post Above)
Point Load: D $=2.660$, L = $6.790 \mathrm{k} @ 10.50 \mathrm{ft}$, (Post Above)
Point Load: D $=1.680$, L $=2.460 \mathrm{k} @ 8.670 \mathrm{ft}$, (Flush Beam)
Load for Span Number 2
Uniform Load : $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$, (Deck)
Load for Span Number 3
Uniform Load : $\mathrm{D}=0.0220, \mathrm{~L}=0.060 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$, (Deck)

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.767: 1	Maximum Shear Stress Ratio = Section used for this span		0.193 : 1
Section used for this span	HSS9x5x3/8			HSS9x5x3/8
Ma : Applied	45.264 k-ft		Va : Applied	17.661 k
Mn / Omega : Allowable	58.992 k -ft		Vn/Omega : Allowable	91.744 k
Load Combination	+D+L		Combination on of maximum on span	$\stackrel{+\mathrm{D}+\mathrm{L}}{ } \mathrm{ft}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.249 in Ratio $=$	697 >=360.	Span: 3 : L Only	
Max Upward Transient Deflection	-0.015 in Ratio =	2,423 >=360.	Span: 3 : L Only	
Max Downward Total Deflection	0.370 in Ratio $=$	$471>=240$.	Span: 3 : +D+L	
Max Upward Total Deflection	-0.022 in Ratio =	$1644>=240$.	Span: 3 : +D+L	

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	mega Cb	Rm	Va Max	VnxVn	ega
D Only												
Dsgn. L = 14.50 ft	1	0.249	0.062	10.50	-14.70	14.70	98.52	58.991 .00	1.00	5.67	153.21	91.74
Dsgn. L $=3.00 \mathrm{ft}$	2	0.249	0.040	-0.00	-14.70	14.70	98.52	58.991 .00	1.00	3.63	153.21	91.74
Dsgn. $\mathrm{L}=7.25 \mathrm{ft}$	3	0.078	0.014		-4.61	4.61	98.52	58.991 .00	1.00	1.27	153.21	91.74

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	Project File: Hong Kao.ec6	
LIC\# : KW-06016450, Build:20.23.05.25	QUANTUM CONSULTING ENGINEERS	(c) ENERCALC INC 1983-202:

DESCRIPTION: Main Floor B7 - Deck Beam, Grid C

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	$\overline{M m a x+}$	Mmax -	Ma Max	Mnx Mnx	Omega Cb	Rm	Va Max	VnxVnx	nega
+ $\overline{\text { + }+ \text { L }}$												
Dsgn. $\mathrm{L}=14.50 \mathrm{ft}$	1	0.767	0.193	30.78	-45.26	45.26	98.52	58.991 .00	1.00	17.66	153.21	91.74
Dsgn. $\mathrm{L}=3.00 \mathrm{ft}$	2	0.767	0.120	-0.00	-45.26	45.26	98.52	58.991 .00	1.00	10.98	153.21	91.74
Dsgn. $\mathrm{L}=7.25 \mathrm{ft}$	3	0.252	0.045		-14.86	14.86	98.52	58.991 .00	1.00	4.10	153.21	91.74
+D+0.750L												
Dsgn. L $=14.50 \mathrm{ft}$	1	0.638	0.160	25.71	-37.62	37.62	98.52	58.991 .00	1.00	14.66	153.21	91.74
Dsgn. $\mathrm{L}=3.00 \mathrm{ft}$	2	0.638	0.100	-0.00	-37.62	37.62	98.52	58.991 .00	1.00	9.14	153.21	91.74
Dsgn. L = 7.25 ft	3	0.209	0.037		-12.30	12.30	98.52	58.991 .00	1.00	3.39	153.21	91.74
+0.60D												
Dsgn. L $=14.50 \mathrm{ft}$	1	0.150	0.037	6.30	-8.82	8.82	98.52	58.991 .00	1.00	3.40	153.21	91.74
Dsgn. $\mathrm{L}=3.00 \mathrm{ft}$	2	0.150	0.024	-0.00	-8.82	8.82	98.52	58.991 .00	1.00	2.18	153.21	91.74
Dsgn. $\mathrm{L}=7.25 \mathrm{ft}$	3	0.047	0.008		-2.77	2.77	98.52	58.991 .00	1.00	0.76	153.21	91.74

Load Combination	Span	Max. "-" Defi	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L	1	0.3697	7.057		0.0000	0.000
	2	0.0000	7.057	+D+L	-0.0219	1.380
+D+L	3	0.2974	7.250		0.0000	1.380

Vertical Reactions	Support notation : Far left is \#				Values in KIPS
Load Combination	Support 1	Support 2 Support 3	Support 4		
Max Upward from all Load Conditions	7.073	28.643			
Max Upward from Load Combinations	7.073	28.643			
Max Upward from Load Cases	4.938	19.342			
Max Downward from all Load Conditions (Resi			-5.184		
Max Downward from Load Combinations (Resi		-5.184			
Max Downward from Load Cases (Resisting U			-3.357		
D Only	2.135	9.301	-1.827		
+D+L	7.073	28.643	-5.184		
+D+0.750L	5.838	23.807	-4.345		
+0.60D	1.281	5.580	-1.096		
L Only	4.938	19.342	-3.357		

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202E

DESCRIPTION: Main Floor P6-Steel Garage Column

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Steel Section Name: HSS4x4x1/4		Overall Column Height	8.0 ft
Analysis Method: A	Allowable Strength	Top \& Bottom Fixity	Top \& Bottom Pinned
Steel Stress Grade		Brace condition :	
Fy : Steel Yield	46.0 ksi	Unbraced Length for	ckling ABOUT X -X Axis $=8.0 \mathrm{ft}, \mathrm{K}=1.0$
E : Elastic Bending Modulus	us $29,000.0 \mathrm{ksi}$	Unbraced Length for	ckling ABOUT Y - Y Axis $=8.0 \mathrm{ft}, \mathrm{K}=1.0$
Applied Loads		Service loads ent	d. Load Factors will be applied for calcula

Column self weight included : 97.680 lbs * Dead Load Factor
AXIAL LOADS . . .
Steel Beam: Axial Load at $8.0 \mathrm{ft}, \mathrm{D}=21.60, \mathrm{~L}=18.0, \mathrm{~S}=7.760 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results				
PASS	Max. Axial+Bending Stress Ratio =	0.5779 : 1	Maximum Load Reactions . .	
	Load Combination	+D+0.750L+0.750S	Top along X-X	k
	Location of max.above base	0.0 ft	Bottom along $\mathrm{X}-\mathrm{X}$	k
	At maximum location values are...		Top along Y-Y	k
	Pa : Axial	41.018 k	Bottom along Y-Y	k
	Pn / Omega : Allowablı	70.980 k		
	Ma-x : Applied	$0.0 \mathrm{k}-\mathrm{ft}$	Maximum Load Deflections ...	
	Mn-x / Omega : Allowable	$10.765 \mathrm{k}-\mathrm{ft}$	Along Y - Y in at for load combination :	ft above base
	Ma-y : Applied	$0.0 \mathrm{k}-\mathrm{ft}$		
	Mn-y / Omega : Allowable	$10.765 \mathrm{k}-\mathrm{ft}$	Along X-X in at for load combination :	ft above base
PASS	Maximum Shear Stress Ratir	0.0 : 1		
	Load Combination	0.0		
	Location of max.above base	0.0 ft		
	At maximum location values are ...			
	Va : Applied Vn / Omega : Allowable	0.0 k 0.0 k		

Load Combination Results

	Maximum Axial + Bending Stress Ratios		Cbx	Cby	KxLx/Ry KyLy/Rx		Maximum Shear Ratios		
Load Combination	Stress Ratio Status	Location					Stress Ratio S	tatus	Location
Maximum Reactions						Note: Only non-zero reactions are listed.			
Load Combination	Axial Reaction @ Base	X-X Axis Reaction @ Base @ Top		Y-Y Axis @ Base	Reaction @ Top		d Moments k-ft @ Top		End Moments @
Extreme Reactions									
Item	Axial Reaction	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis @ Base	Reaction @ Top	Mx-	Moments \mathbf{k}-ft e @ Top	My - @ B	End Moments

Maximum Deflections for Load Combinations

Load Combination	Max. Deflection in X dir	Distance	Max. Deflection in Y dir	Distance
Steel Section Properties :	HSS4x4x1/4			
Steel Section Properties :	HSS4x4x1/4			

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column							Project File: Hong Kao.ec6	
LIC\# : KW-06016450, Build:20.23.05.25				QUANTUM CONSULTING ENGINEERS			(c) ENERCALC INC 1983-202\%	
DESCRIPTION: Main Floor P6-Steel Garage Column								
Depth	=	4.000 in	1 xx	=	7.80 in^4	J	=	12.800 in^4
Design Thick	=	0.233 in	Sxx	=	$3.90 \mathrm{in}^{\wedge} 3$			
Width	=	4.000 in	R xx	=	1.520 in			
Wall Thick	=	0.250 in	Zx	=	4.690 in^3			
Area	=	3.370 in^2	1 yy	=	7.800 in^4	C	=	$6.560 \mathrm{in}^{\wedge} 3$
Weight	$=$	12.210 plf	Syy	=	3.900 in^3			
			R yy	$=$	1.520 in			

Sketches

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column

Project File: Hong Kao.ec6
LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Main Floor P7-Steel Living Room Column

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Steel Section Name: HSS4x4x1/4		Overall Column Height	15.0 ft
Analysis Method: A	Allowable Strength	Top \& Bottom Fixity	Top \& Bottom Pinned
Steel Stress Grade		Brace condition :	
Fy : Steel Yield	46.0 ksi	Unbraced Length for	ckling ABOUT X -X A
E : Elastic Bending Modulus	us $29,000.0 \mathrm{ksi}$	Unbraced Length for	ckling ABOUT Y-Y Axi
Applied Loads		Service loads ente	d. Load Factors will be

Column self weight included : 183.150 lbs * Dead Load Factor
AXIAL LOADS . . .
Roof Beam: Axial Load at $15.0 \mathrm{ft}, \mathrm{D}=5.20, \mathrm{~S}=7.0 \mathrm{k}$
Floor Beam: Axial Load at $15.0 \mathrm{ft}, \mathrm{D}=2.590, \mathrm{~L}=4.360 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results				
PASS	Max. Axial+Bending Stress Ratio =	0.4566 : 1	Maximum Load Reactions ..	
	Load Combination	+D+0.750L+0.750S	Top along X-X	k
	Location of max.above base	0.0 ft	Bottom along $\mathrm{X}-\mathrm{X}$	k
	At maximum location values are		Top along Y-Y	k
	Pa : Axial	16.493 k	Bottom along Y-Y	k
	Pn / Omega : Allowablı	36.120 k		
	Ma-x : Applied	$0.0 \mathrm{k}-\mathrm{ft}$	Maximum Load Deflections ...	
	Mn-x / Omega : Allowable	$10.765 \mathrm{k}-\mathrm{ft}$	Along Y-Y in at for load combination :	ft above base
	Ma-y : Applied	$0.0 \mathrm{k}-\mathrm{ft}$		
	Mn-y / Omega : Allowable	$10.765 \mathrm{k}-\mathrm{ft}$	Along X-X in at for load combination :	ft above base
PASS	Maximum Shear Stress Ratir	$0.0: 1$		
	Load Combination	0.0		
	Location of max.above base	0.0 ft		
	At maximum location values are...			
	Va : Applied Vn / Omega : Allowable	$0.0 \mathrm{k}$		

Load Combination Results

Maximum Deflections for Load Combinations				
Load Combination	Max. Deflection in X dir	Distance	Max. Deflection in Y dir	Distance
Steel Section Properties	HSS4x4x1/4			
Steel Section Properties	HSS4x4x1/4			

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column							Project File: Hong Kao.ec6	
LIC\# : KW-06016450, Build:20.23.05.25				QUANTUM CONSULTING ENGINEERS			(c) ENERCALC INC 1983-202E	
DESCRIPTION: Main Floor P7-Steel Living Room Column								
Depth	=	4.000 in	1 xx	=	7.80 in^4	J	=	$12.800 \mathrm{in}^{\wedge} 4$
Design Thick	=	0.233 in	Sxx	=	$3.90 \mathrm{in}^{\wedge} 3$			
Width	=	4.000 in	R xx	=	1.520 in			
Wall Thick	=	0.250 in	Zx	=	$4.690 \mathrm{in}^{\wedge} 3$			
Area	=	3.370 in^2	1 yy	=	$7.800 \mathrm{in}^{\wedge} 4$	C	=	$6.560 \mathrm{in}^{\wedge} 3$
Weight	=	12.210 plf	S yy	=	3.900 in^3			
			R yy	$=$	1.520 in			

Sketches

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202乏

DESCRIPTION: Crawlspace BP4-Crawlspace Column

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Column self weight included : 146.520 lbs * Dead Load Factor
AXIAL LOADS . . .
Flush Wood Beam: Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=4.340, \mathrm{~L}=1.210, \mathrm{~S}=1.680 \mathrm{k}$
Dropped Steel Beam: Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=11.170, \mathrm{~L}=8.610, \mathrm{~S}=4.370 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Project Title:
Engineer:
Project ID:
Project Descr:

Sketches

QCE		SK-1
MKS		Jun 07, 2023
		Living Room Roof Framing.r3d

Node Boundary Conditions

Node Label		X $[\mathrm{k} / \mathrm{in}]$	$\mathrm{Y}[\mathrm{k} / \mathrm{in}]$	$\mathrm{Z}[\mathrm{k} / \mathrm{in}]$	X Rot $[\mathrm{k}-\mathrm{ft} / \mathrm{rad}]$
1	N11	Reaction	Reaction	Reaction	Reaction
2	N9	Reaction	Reaction	Reaction	Reaction
3	N8	Reaction	Reaction	Reaction	Rean
4	N1	Reaction	Reaction	Reaction	
5	N2	Reaction		Reaction	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [$1 \mathrm{e}^{50} \mathrm{~F}^{-1}$]	Density [k/ft $\left.{ }^{3}\right]$	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr. 65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Wood Properties

	Label	Type	Database	Species	Grade		Ci	EmodNu	Therm. Coeff. [$\left.1^{50} \mathrm{~F}^{50} \mathrm{~F}^{-1}\right]$	Density [$\left.\mathrm{k} / \mathrm{t}^{3}\right]$
1	DF	Solid Sawn	Visually Graded	Douglas Fir-Larch	No. 1			10.3	0.3	0.035
2	SP	Solid Sawn	Visually Graded	Southern Pine	No. 1			10.3	0.3	0.035
3	HF	Solid Sawn	Visually Graded	Hem-Fir	No. 1			10.3	0.3	0.035
4	SPF	Solid Sawn	Visually Graded	Spruce-Pine-fir	No. 1			10.3	0.3	0.035
5	24F-1.8E DF Balanced	Glulam	NDS Table 5A	24F-1.8E DF BAL	na			10.3	0.3	0.035
6	24F-1.8E DF Unbalanced	Glulam	NDS Table 5A	24F-1.8E DF UNBAL	na			10.3	0.3	0.035
7	24F-1.8E SP Balanced	Glulam	NDS Table 5A	24F-1.8E SP BAL	na			10.3	0.3	0.035
8	24F-1.8E SP Unbalanced	Glulam	NDS Table 5A	24F-1.8E SP UNBAL	na			10.3	0.3	0.035
9	1.3E-1600F VERSALAM	SCL	Boise Cascade	1.3E-1600F VERSALAM	na			10.3	0.3	0.035
10	1.35E LSL SolidStart	SCL	Louisiana Pacific	1.35E LSL SolidStart	na			10.3	0.3	0.035
11	1.3E RIGIDLAM LVL	SCL	Roseburg Forest Products	1.3E RIGIDLAM LVL	na			10.3	0.3	0.035
12	2.0E DF Parallam PSL	SCL	TrusJoist	2.0E DF Parallam PSL	na			10.3	0.3	0.035
13	LVL PRL 1.5E 2250F	Custom	N/A	LVL PRL 1.5E 2250F	na			10.3	0.3	0.035
14	LVL_Microlam_1.9E_2600F	Custom	N/A	LVL_Microllam_1.9E_2600F	na			10.3	0.3	0.035
15	PSL_Parallam_2.0E_2900F	Custom	N/A	PSL_Parallam_2.0E_2900F	na			10.3	0.3	0.035
16	LSL_TimberStrand_1.55E_2325F	Custom	N/A	LSL_TimberStrand_1.55E_2325F	na			10.3	0.3	0.035

	Company Designer Job Number Model Name	$\begin{aligned} & \text { QCE } \\ & \text { MKS } \end{aligned}$					$\begin{aligned} & 17 / 2023 \\ & : 49: 02 \mathrm{~A} \\ & \text { hecked } \end{aligned}$	
Custom Wood Properties								
Label		Fb	Ft	Fv	Fc	E	E05	Type
1	LVL PRL 1.5E 2250F	2.25	1.5	0.22	1.95	1500	1005	SCL
2	LVL PRL 2.0E 2900F	2.9	1.9	0.285	2.75	2000	1340	SCL
3	LVL Microllam 1.9E 2600F	2.6	1.555	0.285	2.51	1900	1273	SCL
4	PSL Parallam 2.0E 2900F	2.9	2.025	0.29	2.9	2000	1340	SCL
5	PSL_Parallam 1.8E	2.4	1.755	0.18	2.5	1800	1206	SCL
6	LSL TimberStrand 1.55E 2325F	2.325	1.07	0.31	2.05	1550	1038.5	SCL
7	LSL TimberStrand 1.3E 1700F	1.7	1.075	0.4	1.4	1300	871	SCL

Hot Rolled Steel Design Parameters

	Label	Shape	Length $[\mathrm{ft}]$	Lcomp top $[\mathrm{ft}]$	Channel Conn.		a [ft]	
Function								
1	M3	W10X33	17	Lbyy	N/A	N/A	Lateral	
2	M4	W16X67	27	Lbyy	N/A	N/A	Lateral	

Wood Design Parameters

	Label	Shape	Length [ft]	le2 [ft]	le-bend top [ft]	Cr	y sway	z sway
1	M1	5.125X21FS	33.75		Lbyy			
2	M2	5.125X21FS	14	2	Lbyy			

Design Size and Code Check Parameters

	Label	Max Axial/Bending Chk	Max Shear Chk
1	Typical	1	1

Deflection Design								
Label			LC	Ratio	LC	Ratio	LC	Ratio
1								
1								

Node Loads and Enforced Displacements (BLC 2 : Deck Dead Load)

Node Label		L, D, M	Direction	
1	N2	L	Y	Magnitude [(k, k-ft), (in, rad), $\left.\left(\mathrm{k}^{*} \mathrm{~s}^{2} / \mathrm{ft}, \mathrm{k}^{*} \mathrm{~s}^{2 * f t}\right)\right]$

Node Loads and Enforced Displacements (BLC 4 : Live Load)

Node Labe		L, D, M	Direction	Magnitude [(k, k-ft), (in, rad), (k*s2/ft, $\left.\mathrm{k}^{*} \mathrm{~s}^{2 *} \mathrm{ft}\right)$]
1	N2	L	Y	-4

\qquad

Node Loads and Enforced Displacements (BLC 5 : Earthquake)

Node Label		L, D, M	Direction	Magnitude $\left[(k, k-f t),(i n, r a d),\left(k^{*} s^{2} / f t, k^{*} s^{2 *} f t\right)\right]$
1	N3	L	Z	2.91

| Member Distributed Loads (BLC 1 : Roof Dead Load) |
| :--- | | 1 | Member LabelDirectionStart Magnitude $[\mathrm{k} / \mathrm{ft}, \mathrm{F}, \mathrm{ksf}$, $\mathrm{k}-\mathrm{ft} / \mathrm{ft}]$ End Magnitude $[\mathrm{k} / \mathrm{ft}, \mathrm{F}, \mathrm{ksf}, \mathrm{k}-\mathrm{ft} / \mathrm{ft}]$ Start Location [(ft, \%)]End Location [(ft, \%)] | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2 | M1 | Y | -0.18 | -0.18 | 0 |
| 100 | | | | | |

Member Distributed Loads (BLC 3 : Snow Load)

Member LabelDirectionStart Magnitude [k/ft, F, ksf, k-ft/ft]End Magnitude [k/ft, F, ksf, k-ft/ft]Start Location [(ft, \%)] End Location [(ft, \%)]

1	M 1	Y	-0.27	-0.27	0

Basic Load Cases

| | BLC Description | Category | Y Gravity | Z Gravity | Nodal | Distributed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Roof Dead Load | DL | -1 | | | 2 |
| 2 | Deck Dead Load | DL | | | 1 | |
| 3 | Snow Load | SL | | | 1 | |
| 4 | Live Load | LL | | | 1 | |
| 5 | Earthquake | EL | | 0.78 | 1 | |

Load Combinations

	Description	Solve	-Delta	BLC	Factor								
1	Live Only	Yes	Y	LL	1								
2	Snow Only	Yes	Y	SL	1								
3	+ EQ Only	Yes	Y	EL	1								
4	- EQ Only	Yes	Y	EL	-1								
5	IBC 16-8 D Only	Yes	Y	DL	1								
6	IBC 16-9 D + L	Yes	Y	DL	1	LL	1						
7	IBC 16-10 D + S	Yes	Y	DL	1	SL	1						
8	IBC 16-11 D+0.75L+0.75S	Yes	Y	DL	1	LL	0.75	SL	0.75				
9	IBC 16-12 D+0.7E	Yes	Y	DL	1	Sds*DL	0.14	EL	0.7				
10		Yes	Y	DL	1	Sds*DL	0.14	EL	-0.7				
11	IBC 16-14 D+0.525E+0.75L+0.75S	Yes	Y	DL	1	Sds*DL	0.105	EL	0.525	LL	0.75	SL	0.75
12		Yes	Y	DL	1	Sds*DL	0.105	EL	-0.525	LL	0.75	SL	0.75
13	IBC 16-16 0.6D+0.7E	Yes	Y	DL	0.6	Sds*DL	-0.14	EL	0.7				
14		Yes	Y	DL	0.6	Sds*DL	-0.14	EL	-0.7				
15	IBC 16-5 (LRFD)		Y	DL	1.2	Sds*DL	0.2	EL	1	LL	0.5	SL	0.7

Node Reactions

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N11	0	-0.001	0	0	0	0
2	1	N9	0	0.002	0	0	0	0
3	1	N8	0	0	0	0	0	0
4	1	N1	0	3.998	0.002	0	0	0
5	1	N2	0	0	-0.002	0	0	0
6	1	Totals:	0	4	0			
7	1	COG (ft):	X: 0	$\mathrm{Y}: 11.25$	Z: 0			
8	2	N11	0	1.692	-0.01	0	0	0
9	2	N9	0	6.779	0.027	0	0	0

Company : QCE
6/7/2023
Designer : MKS
9:49:02 AM
Job Number :
Model Name :
Checked By

Node Reactions (Continued)

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
10	2	N8	0	0	0	0	0	0
11	2	N1	0	0.642	-0.632	0	0	0
12	2	N2	-0.001	0	0.615	0	0	0
13	2	Totals:	0	9.113	0			
14	2	COG (ft):	X: 14.125	Y: 27	Z: -11.5			
15	3	N11	0	0.489	-0.111	0	0	0
16	3	N9	0	-1.348	-0.559	0	0	0
17	3	N8	0	0.001	-0.108	0	0	0
18	3	N1	0	0.858	4.371	0	0	0
19	3	N2	0	0	-9.32	0	0	0
20	3	Totals:	0	0	-5.727			
21	3	COG (ft):	NC	NC	NC			
22	4	N11	0	-0.488	0.111	0	0	0
23	4	N9	0	1.344	0.558	0	0	0
24	4	N8	0	-0.001	0.108	0	0	0
25	4	N1	0	-0.856	-4.362	0	0	0
26	4	N2	0	0	9.312	0	0	0
27	4	Totals:	0	0	5.727			
28	4	COG (ft):	NC	NC	NC			
29	5	N11	0	1.374	0.001	0	0	0
30	5	N9	0	4.951	-0.003	0	0	0
31	5	N8	0	1.091	0	0	0	0
32	5	N1	0	6.291	0.078	0	0	0
33	5	N2	-0.001	0	-0.076	0	0	0
34	5	Totals:	0	13.707	0			
35	5	COG (ft):	X: 8.065	Y: 23.503	Z: -4.803			
36	6	N11	0	1.373	0.001	0	0	0
37	6	N9	0	4.953	-0.003	0	0	0
38	6	N8	0	1.091	0	0	0	0
39	6	N1	0	10.29	0.08	0	0	0
40	6	N2	-0.001	0	-0.078	0	0	0
41	6	Totals:	0	17.707	0			
42	6	COG (ft):	X: 6.243	Y: 20.735	Z: -3.718			
43	7	N11	0	3.066	-0.009	0	0	0
44	7	N9	0	11.73	0.024	0	0	0
45	7	N8	0.001	1.09	0	0	0	0
46	7	N1	0	6.933	-0.557	0	0	0
47	7	N2	-0.001	0	0.542	0	0	0
48	7	Totals:	0	22.819	0			
49	7	COG (ft):	X: 10.485	Y: 24.899	Z: -7.477			
50	8	N11	0	2.642	-0.006	0	0	0
51	8	N9	0	10.037	0.017	0	0	0
52	8	N8	0.001	1.09	0	0	0	0
53	8	N1	0	9.771	-0.397	0	0	0
54	8	N2	-0.001	0	0.386	0	0	0
55	8	Totals:	0	23.541	0			
56	8	COG (ft):	X: 8.797	Y: 22.957	Z: -6.135			
57	9	N11	0	1.904	-0.076	0	0	0
58	9	N9	0	4.676	-0.395	0	0	0
59	9	N8	0.001	1.239	-0.076	0	0	0
60	9	N1	0	7.749	3.163	0	0	0
61	9	N2	-0.001	0	-6.625	0	0	0
62	9	Totals:	0	15.568	-4.009			
63	9	COG (ft):	X: 8.065	$\mathrm{Y}: 23.503$	Z: -4.803			
64	10	N11	0	1.217	0.079	0	0	0

Company : QCE
6/7/2023
Designer : MKS
9:49:02 AM
Job Number :
Model Name :
Checked By

Node Reactions (Continued)

LC									Node Label
65	10	N 9	$\mathrm{X}[\mathrm{k}]$	$\mathrm{Y}[\mathrm{k}]$	$\mathrm{Z}[\mathrm{k}]$	$\mathrm{MX}[\mathrm{k}-\mathrm{ft}]$	$\mathrm{MY}[\mathrm{k}-\mathrm{ft}]$	0	0

Node Displacements

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
1	1	N1	0	0	0	-1.908e-7	0	0
2	1	N2	0	-0.001	0	$4.535 \mathrm{e}-7$	0	0
3	1	N3	0	-0.001	0	2.292e-6	0	3.1e-8
4	1	N4	0	-0.001	0	0	$1.913 \mathrm{e}-6$	$9.901 \mathrm{e}-6$
5	1	N5	0	-0.001	0	0	2.259e-6	$4.434 \mathrm{e}-6$
6	1	N6	0	-0.002	0	0	$1.913 \mathrm{e}-6$	$9.901 \mathrm{e}-6$
7	1	N7	0	-0.001	0	0	2.259e-6	$4.434 \mathrm{e}-6$
8	1	N8	0	0	0	0	$1.913 \mathrm{e}-6$	9.91e-6
9	1	N9	0	0	0	0	$1.218 \mathrm{e}-6$	$2.399 \mathrm{e}-6$
10	1	N11	0	0	0	0	-6.086e-7	-1.178e-6
11	2	N1	0	0	0	$7.708 \mathrm{e}-5$	$5.587 \mathrm{e}-7$	$9.213 \mathrm{e}-8$
12	2	N2	0	0	0	-1.832e-4	$5.587 \mathrm{e}-7$	-1.859e-7
13	2	N3	0	0	-0.104	-9.255e-4	5.587e-7	$1.9 \mathrm{e}-6$
14	2	N4	0	0.061	-0.104	0	-7.726e-4	-4.487e-4
15	2	N5	0	-0.273	-0.104	0	-9.123e-4	$2.479 \mathrm{e}-3$
16	2	N6	0	0.075	-0.13	0	-7.726e-4	-4.487e-4
17	2	N7	0	-0.355	-0.134	0	-9.123e-4	$2.498 \mathrm{e}-3$
18	2	N8	0	0	0	0	-7.726e-4	-4.492e-4

\qquad

Node Displacements (Continued)

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
19	2	N9	0	0	0	0	-4.92e-4	8.234e-4
20	2	N11	0	0	0	0	$2.458 \mathrm{e}-4$	$4.878 \mathrm{e}-4$
21	3	N1	0	0	0	-5.486e-4	3.966e-7	$6.545 \mathrm{e}-8$
22	3	N2	0	0	0	$1.331 \mathrm{e}-3$	3.966e-7	-1.321e-7
23	3	N3	0	-0.001	0.559	$3.403 \mathrm{e}-3$	3.966e-7	$1.349 \mathrm{e}-6$
24	3	N4	0	-0.225	0.559	0	$3.793 \mathrm{e}-3$	$1.666 \mathrm{e}-3$
25	3	N5	0	0.275	0.56	0	$5.07 \mathrm{e}-3$	-2.39e-3
26	3	N6	0	-0.28	0.685	0	$3.82 \mathrm{e}-3$	$1.666 \mathrm{e}-3$
27	3	N7	0	0.354	0.727	0	$5.097 \mathrm{e}-3$	-2.39e-3
28	3	N8	0	0	0	0	$4.552 \mathrm{e}-3$	$1.668 \mathrm{e}-3$
29	3	N9	0	0	0	0	$1.991 \mathrm{e}-3$	-1.293e-3
30	3	N11	0	0	0	0	$2.578 \mathrm{e}-4$	$6.35 \mathrm{e}-4$
31	4	N1	0	0	0	$5.475 \mathrm{e}-4$	-3.964e-7	-6.552e-8
32	4	N2	0	0	0	-1.329e-3	-3.964e-7	$1.322 \mathrm{e}-7$
33	4	N3	0	0.001	-0.558	-3.396e-3	-3.964e-7	-1.349e-6
34	4	N4	0	0.225	-0.558	0	-3.785e-3	-1.664e-3
35	4	N5	0	-0.275	-0.558	0	$-5.06 \mathrm{e}-3$	$2.385 \mathrm{e}-3$
36	4	N6	0	0.28	-0.684	0	-3.812e-3	-1.664e-3
37	4	N7	0	-0.353	-0.726	0	-5.087e-3	$2.385 \mathrm{e}-3$
38	4	N8	0	0	0	0	-4.544e-3	-1.665e-3
39	4	N9	0	0	0	0	-1.986e-3	$1.29 \mathrm{e}-3$
40	4	N11	0	0	0	0	-2.603e-4	-6.335e-4
41	5	N1	0	0	0	-9.553e-6	$7.401 \mathrm{e}-7$	$1.213 \mathrm{e}-7$
42	5	N2	0	-0.002	0	2.27e-5	$7.401 \mathrm{e}-7$	-2.447e-7
43	5	N3	0	-0.003	0.013	$1.144 \mathrm{e}-4$	$7.401 \mathrm{e}-7$	2.51e-6
44	5	N4	0	-0.06	0.013	0	$9.563 \mathrm{e}-5$	$2.582 \mathrm{e}-4$
45	5	N5	0	-0.163	0.013	0	$1.129 \mathrm{e}-4$	$1.494 \mathrm{e}-3$
46	5	N6	0	-0.069	0.016	0	$9.563 \mathrm{e}-5$	$2.727 \mathrm{e}-4$
47	5	N7	0	-0.212	0.017	0	$1.129 \mathrm{e}-4$	$1.508 \mathrm{e}-3$
48	5	N8	0	0	0	0	9.563e-5	6.646e-4
49	5	N9	0	0	0	0	$6.09 \mathrm{e}-5$	$4.129 \mathrm{e}-4$
50	5	N11	0	0	0	0	-3.042e-5	$4.785 \mathrm{e}-4$
51	6	N1	0	0	0	-9.745e-6	$7.492 \mathrm{e}-7$	$1.228 \mathrm{e}-7$
52	6	N2	0	-0.003	0	2.316e-5	7.492e-7	-2.478e-7
53	6	N3	0	-0.004	0.013	$1.167 \mathrm{e}-4$	$7.492 \mathrm{e}-7$	2.541e-6
54	6	N4	0	-0.061	0.013	0	$9.755 \mathrm{e}-5$	2.682e-4
55	6	N5	0	-0.163	0.013	0	$1.152 \mathrm{e}-4$	$1.498 \mathrm{e}-3$
56	6	N6	0	-0.071	0.016	0	9.755e-5	2.826e-4
57	6	N7	0	-0.213	0.017	0	$1.152 \mathrm{e}-4$	$1.512 \mathrm{e}-3$
58	6	N8	0	0	0	0	$9.755 \mathrm{e}-5$	$6.745 \mathrm{e}-4$
59	6	N9	0	0	0	0	6.213e-5	$4.153 \mathrm{e}-4$
60	6	N11	0	0	0	0	-3.103e-5	$4.773 \mathrm{e}-4$
61	7	N1	0	0	0	6.796e-5	$1.301 \mathrm{e}-6$	$2.129 \mathrm{e}-7$
62	7	N2	0	-0.002	0	-1.615e-4	$1.301 \mathrm{e}-6$	-4.297e-7
63	7	N3	0	-0.004	-0.092	-8.137e-4	$1.301 \mathrm{e}-6$	$4.412 \mathrm{e}-6$
64	7	N4	0	0.001	-0.092	0	-6.801e-4	-1.918e-4
65	7	N5	0	-0.436	-0.092	0	-8.031e-4	$3.974 \mathrm{e}-3$
66	7	N6	0	0.006	-0.114	0	-6.801e-4	-1.773e-4
67	7	N7	0	-0.568	-0.118	0	-8.031e-4	$4.008 \mathrm{e}-3$
68	7	N8	0	0	0	0	-6.801e-4	$2.141 \mathrm{e}-4$
69	7	N9	0	0	0	0	-4.332e-4	$1.237 \mathrm{e}-3$
70	7	N11	0	0	0	0	$2.164 \mathrm{e}-4$	$9.658 \mathrm{e}-4$
71	8	N1	0	0	0	4.842e-5	$1.168 \mathrm{e}-6$	1.912e-7
72	8	N2	0	-0.003	0	-1.151e-4	$1.168 \mathrm{e}-6$	-3.858e-7
73	8	N3	0	-0.004	-0.065	-5.799e-4	$1.168 \mathrm{e}-6$	3.96e-6

\qquad
\qquad

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
74	8	N4	0	-0.016	-0.065	0	-4.846e-4	-7.18e-5
75	8	N5	0	-0.368	-0.065	0	-5.723e-4	$3.357 \mathrm{e}-3$
76	8	N6	0	-0.014	-0.081	0	-4.846e-4	-5.734e-5
77	8	N7	0	-0.48	-0.084	0	-5.723e-4	$3.386 \mathrm{e}-3$
78	8	N8	0	0	0	0	-4.846e-4	$3.342 \mathrm{e}-4$
79	8	N9	0	0	0	0	-3.086e-4	$1.033 \mathrm{e}-3$
80	8	N11	0	0	0	0	$1.542 \mathrm{e}-4$	$8.431 \mathrm{e}-4$
81	9	N1	0	0	0	-3.966e-4	$1.122 \mathrm{e}-6$	$1.835 \mathrm{e}-7$
82	9	N2	0	-0.002	0	$9.618 \mathrm{e}-4$	$1.122 \mathrm{e}-6$	-3.703e-7
83	9	N3	0	-0.004	0.408	$2.522 \mathrm{e}-3$	$1.122 \mathrm{e}-6$	3.802e-6
84	9	N4	0	-0.227	0.408	0	2.776e-3	$1.465 \mathrm{e}-3$
85	9	N5	0	0.009	0.408	0	3.692e-3	$1.614 \mathrm{e}-5$
86	9	N6	0	-0.276	0.5	0	$2.795 \mathrm{e}-3$	$1.481 \mathrm{e}-3$
87	9	N7	0	0.008	0.53	0	3.711e-3	3.255e-5
88	9	N8	0	0	0	0	$3.308 \mathrm{e}-3$	$1.928 \mathrm{e}-3$
89	9	N9	0	0	0	0	$1.471 \mathrm{e}-3$	-4.401e-4
90	9	N11	0	0	0	0	$1.418 \mathrm{e}-4$	$9.898 \mathrm{e}-4$
91	10	N1	0	0	0	$3.743 \mathrm{e}-4$	5.606e-7	$9.181 \mathrm{e}-8$
92	10	N2	0	-0.002	0	-9.089e-4	5.606e-7	-1.853e-7
93	10	N3	0	-0.003	-0.378	-2.259e-3	$5.606 \mathrm{e}-7$	$1.901 \mathrm{e}-6$
94	10	N4	0	0.09	-0.378	0	-2.555e-3	-8.771e-4
95	10	N5	0	-0.378	-0.378	0	-3.431e-3	$3.374 \mathrm{e}-3$
96	10	N6	0	0.118	-0.463	0	-2.574e-3	-8.607e-4
97	10	N7	0	-0.49	-0.492	0	-3.45e-3	$3.39 \mathrm{e}-3$
98	10	N8	0	0	0	0	-3.086e-3	-4.167e-4
99	10	N9	0	0	0	0	-1.33e-3	$1.376 \mathrm{e}-3$
100	10	N11	0	0	0	0	-2.122e-4	$9.787 \mathrm{e}-5$
101	11	N1	0	0	0	-2.419e-4	1.455e-6	$2.378 \mathrm{e}-7$
102	11	N2	0	-0.003	0	$5.892 \mathrm{e}-4$	$1.455 \mathrm{e}-6$	-4.799e-7
103	11	N3	0	-0.005	0.231	$1.226 \mathrm{e}-3$	$1.455 \mathrm{e}-6$	$4.929 \mathrm{e}-6$
104	11	N4	0	-0.14	0.231	0	$1.526 \mathrm{e}-3$	8.333e-4
105	11	N5	0	-0.239	0.231	0	2.112e-3	2.249e-3
106	11	N6	0	-0.168	0.282	0	$1.54 \mathrm{e}-3$	$8.493 \mathrm{e}-4$
107	11	N7	0	-0.315	0.301	0	2.126e-3	$2.28 \mathrm{e}-3$
108	11	N8	0	0	0	0	$1.924 \mathrm{e}-3$	$1.282 \mathrm{e}-3$
109	11	N9	0	0	0	0	$7.489 \mathrm{e}-4$	3.934e-4
110	11	N11	0	0	0	0	$2.834 \mathrm{e}-4$	$1.227 \mathrm{e}-3$
111	12	N1	0	0	0	3.365e-4	$1.033 \mathrm{e}-6$	$1.69 \mathrm{e}-7$
112	12	N2	0	-0.003	0	-8.142e-4	$1.033 \mathrm{e}-6$	-3.411e-7
113	12	N3	0	-0.004	-0.359	-2.361e-3	$1.033 \mathrm{e}-6$	3.502e-6
114	12	N4	0	0.097	-0.359	0	-2.474e-3	-9.238e-4
115	12	N5	0	-0.529	-0.359	0	-3.232e-3	$4.768 \mathrm{e}-3$
116	12	N6	0	0.127	-0.441	0	-2.488e-3	-9.078e-4
117	12	N7	0	-0.688	-0.466	0	-3.246e-3	$4.798 \mathrm{e}-3$
118	12	N8	0	0	0	0	-2.872e-3	-4.772e-4
119	12	N9	0	0	0	0	-1.353e-3	$1.756 \mathrm{e}-3$
120	12	N11	0	0	0	0	$1.822 \mathrm{e}-5$	$5.575 \mathrm{e}-4$
121	13	N1	0	0	0	-3.891e-4	6.216e-7	$1.022 \mathrm{e}-7$
122	13	N2	0	-0.001	0	$9.439 \mathrm{e}-4$	6.216e-7	-2.063e-7
123	13	N3	0	-0.002	0.398	$2.439 \mathrm{e}-3$	$6.216 \mathrm{e}-7$	2.112e-6
124	13	N4	0	-0.186	0.398	0	$2.704 \mathrm{e}-3$	$1.288 \mathrm{e}-3$
125	13	N5	0	0.117	0.398	0	$3.607 \mathrm{e}-3$	-9.823e-4
126	13	N6	0	-0.229	0.488	0	$2.723 \mathrm{e}-3$	$1.295 \mathrm{e}-3$
127	13	N7	0	0.15	0.518	0	3.625e-3	-9.756e-4
128	13	N8	0	0	0	0	$3.235 \mathrm{e}-3$	$1.478 \mathrm{e}-3$

\qquad

Node Displacements (Continued)

LC	Node Label	$\mathrm{X}[\mathrm{in}]$		$\mathrm{Y}[\mathrm{in}]$	$\mathrm{Z}[\mathrm{in}]$	X Rotation [rad]		Y Rotation [rad]		Z Rotation [rad]
129	13	N9	0	0	0	0	$1.425 \mathrm{e}-3$	$-7.148 \mathrm{e}-4$		
130	13	N11	0	0	0	0	$1.649 \mathrm{e}-4$	$6.672 \mathrm{e}-4$		
131	14	N1	0	0	0	$3.797 \mathrm{e}-4$	$6.404 \mathrm{e}-8$	$1.054 \mathrm{e}-8$		
132	14	N2	0	-0.001	0	$-9.216 \mathrm{e}-4$	$6.404 \mathrm{e}-8$	$-2.128 \mathrm{e}-8$		
133	14	N3	0	-0.001	-0.386	$-2.33 \mathrm{e}-3$	$6.404 \mathrm{e}-8$	$2.176 \mathrm{e}-7$		
134	14	N4	0	0.13	-0.386	0	$-2.611 \mathrm{e}-3$	$-1.047 \mathrm{e}-3$		
135	14	N5	0	-0.268	-0.386	0	$-3.497 \mathrm{e}-3$	$2.366 \mathrm{e}-3$		
136	14	N6	0	0.164	-0.472	0	$-2.63 \mathrm{e}-3$	$-1.041 \mathrm{e}-3$		
137	14	N7	0	-0.346	-0.502	0	$-3.516 \mathrm{e}-3$	$2.373 \mathrm{e}-3$		
138	14	N8	0	0	0	0	$-3.143 \mathrm{e}-3$	$-8.598 \mathrm{e}-4$		
139	14	N9	0	0	0	0	$-1.366 \mathrm{e}-3$	$1.097 \mathrm{e}-3$		
140	14	N11	0	0	0	0	$-1.943 \mathrm{e}-4$	$-2.223 \mathrm{e}-4$		

Member Section Forces

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
1	1	M1	1	0	-0.001	0	0	0	0
2			2	0	-0.001	0	0	0	0.008
3			3	0	-0.001	0	0	0	0.015
4			4	0	0.002	0	0	0	0.009
5			5	0	0	0	0	0	0
6	1	M2	1	0	0	0	0	0	0
7			2	0	0	0	0	0	0
8			3	0	0	0	0	0	0
9			4	0	0	0	0	0	0
10			5	0	0	0	0	0	0
11	1	M3	1	0	0	0	0	0	0
12			2	0	0	0	0	0	0
13			3	0	-0.002	0	0	0	-0.014
14			4	0	-0.002	0	0	0	-0.007
15			5	0	-0.002	0	0	0	0
16	1	M4	1	3.998	0.002	0	0	0	0
17			2	3.998	0.002	0	0	0	-0.011
18			3	-0.002	0	0	0	0	-0.018
19			4	-0.002	0	0	0	0	-0.018
20			5	-0.002	0	0	0	0	-0.018
21	2	M1	1	0	1.692	0.01	0	0	0
22			2	0	-0.586	0.01	0	0.084	-4.669
23			3	0	-2.864	0.01	0	0.167	9.884
24			4	0	1.637	-0.017	0	0.099	5.953
25			5	0	0	0	0	0	0
26	2	M2	1	0	0	0	0	0	0
27			2	0	0	0	0	0	0.001
28			3	0	0	0	0	0	0.002
29			4	0	0	0	0	0	0.003
30			5	0	0	0	0	0	0
31	2	M3	1	0	0	0	0.004	0	0
32			2	0	0	0	0.004	0.001	0.001
33			3	0.017	0.642	0	0.01	0.001	5.454
34			4	0.017	0.642	0	0.01	0.001	2.727
35			5	0.017	0.642	0	0.01	0	0
36	2	M4	1	0.642	-0.632	0	0	0	0
37			2	0.642	-0.632	0	0	0.001	4.267
38			3	0.642	-0.017	0	0	0	7.15
39			4	0.642	-0.017	0	0	-0.003	7.263
40			5	0.642	-0.017	0	0	-0.006	7.377

\qquad

Member Section Forces (Continued)

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
41	3	M1	1	0	0.489	0.111	0	0	0
42			2	0	0.489	-0.061	0	0.211	-4.124
43			3	0	0.489	-0.233	0	-1.031	-8.248
44			4	0	-0.859	0.153	0	-0.618	-4.876
45			5	0	0	0	0	0	0
46	3	M2	1	0	0.001	0.108	0	0	0
47			2	0	0.001	0.037	0	0.253	-0.004
48			3	0	0.001	-0.035	0	0.255	-0.009
49			4	0	0.001	-0.106	0	0.008	-0.013
50			5	0	0	0	0	0	0
51	3	M3	1	-0.178	0.003	0	-0.014	0	0
52			2	-0.287	0.003	0	-0.014	0.001	-0.011
53			3	0.238	0.858	0	-0.009	0.001	7.296
54			4	0.129	0.858	0	-0.009	0	3.648
55			5	0.019	0.858	0	-0.009	0	0
56	3	M4	1	0.858	4.371	0	0	0	0
57			2	0.858	4.722	0	0	0	-30.687
58			3	0.858	-4.251	0	0	0	-42.766
59			4	0.858	-3.9	0	0	-0.002	-15.255
60			5	0.858	-3.549	0	0	-0.004	9.885
61	4	M1	1	0	-0.488	-0.111	0	0	0
62			2	0	-0.488	0.061	0	-0.212	4.114
63			3	0	-0.488	0.233	0	1.029	8.229
64			4	0	0.857	-0.153	0	0.617	4.864
65			5	0	0	0	0	0	0
66	4	M2	1	0	-0.001	-0.108	0	0	0
67			2	0	-0.001	-0.037	0	-0.253	0.004
68			3	0	-0.001	0.035	0	-0.255	0.008
69			4	0	-0.001	0.106	0	-0.008	0.013
70			5	0	0	0	0	0	0
71	4	M3	1	0.178	0	0	0.014	0	0
72			2	0.287	0	0	0.014	-0.001	-0.001
73			3	-0.238	-0.857	0	0.009	-0.001	-7.288
74			4	-0.129	-0.857	0	0.009	0	-3.644
75			5	-0.019	-0.857	0	0.009	0	0
76	4	M4	1	-0.856	-4.362	0	0	0	0
77			2	-0.856	-4.713	0	0	0	30.628
78			3	-0.856	4.243	0	0	0	42.685
79			4	-0.856	3.892	0	0	0.002	15.227
80			5	-0.856	3.541	0	0	0.004	-9.859
81	5	M1	1	0	1.374	-0.001	0	0	0
82			2	0	-0.366	-0.001	0	-0.01	-4.253
83			3	0	-2.105	-0.001	0	-0.021	6.17
84			4	0	1.106	0.002	0	-0.012	3.731
85			5	0	0	0	0	0	0
86	5	M2	1	0	1.091	0	0	0	0
87			2	0	0.369	0	0	0	-2.554
88			3	0	-0.353	0	0	0	-2.583
89			4	0	-1.074	0	0	0	-0.086
90			5	0	0	0	0	0	0
91	5	M3	1	0	-1.796	0	-0.002	0	0
92			2	0	-1.936	0	-0.002	0.002	7.93
93			3	-0.002	0.914	0	0.006	0.002	6.576
94			4	-0.002	0.774	0	0.006	0.001	2.99
95			5	-0.002	0.633	0	0.006	0	0

\qquad

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
96	5	M4	1	6.291	0.078	0	0	0	0
97			2	5.841	0.078	0	0	0.001	-0.529
98			3	3.891	0.002	-0.001	0	0	-0.885
99			4	3.441	0.002	-0.001	0	-0.004	-0.897
100			5	2.991	0.002	-0.001	0	-0.008	-0.909
101	6	M1	1	0	1.373	-0.001	0	0	0
102			2	0	-0.367	-0.001	0	-0.011	-4.246
103			3	0	-2.106	-0.001	0	-0.021	6.185
104			4	0	1.108	0.002	0	-0.012	3.74
105			5	0	0	0	0	0	0
106	6	M2	1	0	1.091	0	0	0	0
107			2	0	0.369	0	0	0	-2.554
108			3	0	-0.353	0	0	0	-2.583
109			4	0	-1.074	0	0	0	-0.086
110			5	0	0	0	0	0	0
111	6	M3	1	0	-1.796	0	-0.002	0	0
112			2	0	-1.936	0	-0.002	0.002	7.93
113			3	-0.002	0.912	0	0.006	0.002	6.562
114			4	-0.002	0.772	0	0.006	0.001	2.983
115			5	-0.002	0.632	0	0.006	0	0
116	6	M4	1	10.29	0.08	0	0	0	0
117			2	9.84	0.08	0	0	0.001	-0.539
118			3	3.889	0.002	-0.001	0	0	-0.903
119			4	3.439	0.002	-0.001	0	-0.004	-0.915
120			5	2.989	0.002	-0.001	0	-0.008	-0.927
121	7	M1	1	0	3.066	0.009	0	0	0
122			2	0	-0.952	0.009	0	0.074	-8.919
123			3	0	-4.969	0.009	0	0.147	16.06
124			4	0	2.743	-0.015	0	0.087	9.688
125			5	0	0	0	0	0	0
126	7	M2	1	-0.001	1.09	0	0	0	0
127			2	-0.001	0.369	0	0	0	-2.553
128			3	-0.001	-0.353	0	0	0	-2.58
129			4	-0.001	-1.074	0	0	0	-0.082
130			5	0	0	0	0	0	0
131	7	M3	1	0	-1.796	0.001	0.002	0	0
132			2	0	-1.936	0.001	0.002	0.003	7.931
133			3	0.015	1.555	0	0.016	0.003	12.024
134			4	0.015	1.415	0	0.016	0.001	5.714
135			5	0.015	1.274	0	0.016	0	0
136	7	M4	1	6.933	-0.557	0	0	0	0
137			2	6.482	-0.557	0	0	0.001	3.762
138			3	4.532	-0.012	-0.001	0	0	6.297
139			4	4.082	-0.012	-0.001	0	-0.007	6.378
140			5	3.632	-0.012	-0.001	0	-0.014	6.46
141	8	M1	1	0	2.642	0.006	0	0	0
142			2	0	-0.806	0.006	0	0.052	-7.747
143			3	0	-4.254	0.006	0	0.105	13.599
144			4	0	2.335	-0.011	0	0.062	8.205
145			5	0	0	0	0	0	0
146	8	M2	1	-0.001	1.09	0	0	0	0
147			2	-0.001	0.369	0	0	0	-2.553
148			3	-0.001	-0.353	0	0	0	-2.581
149			4	-0.001	-1.074	0	0	0	-0.083
150			5	0	0	0	0	0	0

\qquad

Member Section Forces (Continued)

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
151	8	M3	1	0	-1.796	0.001	0.001	0	0
152			2	0	-1.936	0.001	0.001	0.003	7.931
153			3	0.011	1.394	0	0.013	0.003	10.652
154			4	0.011	1.253	0	0.013	0.001	5.028
155			5	0.011	1.113	0	0.013	0	0
156	8	M4	1	9.771	-0.397	0	0	0	0
157			2	9.321	-0.397	0	0	0.001	2.68
158			3	4.371	-0.009	-0.001	0	0	4.487
159			4	3.921	-0.009	-0.001	0	-0.006	4.545
160			5	3.47	-0.009	-0.001	0	-0.013	4.604
161	9	M1	1	0	1.904	0.076	0	0	0
162			2	0	-0.072	-0.044	0	0.134	-7.73
163			3	0	-2.047	-0.165	0	-0.748	1.21
164			4	0	0.653	0.11	0	-0.448	0.811
165			5	0	0	0	0	0	0
166	9	M2	1	-0.001	1.239	0.076	0	0	0
167			2	-0.001	0.42	0.026	0	0.177	-2.904
168			3	-0.001	-0.4	-0.024	0	0.179	-2.939
169			4	-0.001	-1.219	-0.074	0	0.006	-0.106
170			5	0	0	0	0	0	0
171	9	M3	1	-0.124	-2.038	0.001	-0.012	0	0
172			2	-0.201	-2.197	0.001	-0.012	0.003	8.999
173			3	0.164	1.642	0	0	0.002	12.601
174			4	0.087	1.482	0	0	0.001	5.962
175			5	0.011	1.323	0	0	0	0
176	9	M4	1	7.749	3.163	0	0	0	0
177			2	7.237	3.409	0	0	0.001	-22.178
178			3	5.022	-2.986	-0.001	0	0	-31.074
179			4	4.511	-2.74	-0.001	0	-0.006	-11.747
180			5	4	-2.495	-0.001	0	-0.012	5.92
181	10	M1	1	0	1.217	-0.079	0	0	0
182			2	0	-0.758	0.041	0	-0.158	-1.937
183			3	0	-2.734	0.162	0	0.7	12.796
184			4	0	1.859	-0.105	0	0.42	7.66
185			5	0	0	0	0	0	0
186	10	M2	1	0	1.238	-0.076	0	0	0
187			2	0	0.418	-0.026	0	-0.177	-2.898
188			3	0	-0.401	0.024	0	-0.179	-2.927
189			4	0	-1.221	0.074	0	-0.006	-0.088
190			5	0	0	0	0	0	0
191	10	M3	1	0.124	-2.04	0	0.007	0	0
192			2	0.201	-2.199	0	0.007	0.001	9.009
193			3	-0.169	0.435	0	0.013	0.001	2.341
194			4	-0.092	0.275	0	0.013	0.001	0.832
195			5	-0.016	0.116	0	0.013	0	0
196	10	M4	1	6.544	-2.98	0	0	0	0
197			2	6.033	-3.226	0	0	0.001	20.946
198			3	3.817	2.986	0	0	0	29.022
199			4	3.306	2.74	0	0	-0.003	9.695
200			5	2.795	2.495	0	0	-0.006	-7.973
201	11	M1	1	0	3.04	0.064	0	0	0
202			2	0	-0.585	-0.026	0	0.161	-10.354
203			3	0	-4.211	-0.116	0	-0.441	9.88
204			4	0	1.995	0.07	0	-0.265	6.016
205			5	0	0	0	0	0	0

\qquad

Member Section Forces (Continued)

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
206	11	M2	1	-0.001	1.202	0.057	0	0	0
207			2	-0.001	0.407	0.019	0	0.133	-2.816
208			3	-0.001	-0.388	-0.018	0	0.134	-2.848
209			4	-0.001	-1.183	-0.056	0	0.004	-0.099
210			5	0	0	0	0	0	0
211	11	M3	1	-0.093	-1.978	0.001	-0.007	0	0
212			2	-0.151	-2.132	0.001	-0.007	0.003	8.734
213			3	0.135	1.94	0	0.009	0.003	15.172
214			4	0.078	1.785	0	0.009	0.002	7.257
215			5	0.02	1.63	0	0.009	0	0
216	11	M4	1	10.864	1.916	0	0	0	0
217			2	10.368	2.101	0	0	0.001	-13.557
218			3	5.219	-2.25	-0.001	0	0	-18.155
219			4	4.723	-2.065	-0.001	0	-0.008	-3.592
220			5	4.227	-1.881	-0.001	0	-0.016	9.726
221	12	M1	1	0	2.525	-0.052	0	0	0
222			2	0	-1.1	0.038	0	-0.058	-6.009
223			3	0	-4.726	0.129	0	0.646	18.57
224			4	0	2.9	-0.091	0	0.386	11.153
225			5	0	0	0	0	0	0
226	12	M2	1	-0.001	1.201	-0.057	0	0	0
227			2	-0.001	0.406	-0.019	0	-0.133	-2.811
228			3	-0.001	-0.389	0.018	0	-0.134	-2.839
229			4	-0.001	-1.184	0.056	0	-0.004	-0.085
230			5	0	0	0	0	0	0
231	12	M3	1	0.093	-1.979	0.001	0.008	0	0
232			2	0.151	-2.134	0.001	0.008	0.002	8.74
233			3	-0.114	1.034	0	0.019	0.002	7.473
234			4	-0.057	0.879	0	0.019	0.001	3.408
235			5	0.001	0.724	0	0.019	0	0
236	12	M4	1	9.96	-2.692	0	0	0	0
237			2	9.464	-2.877	0	0	0.001	18.796
238			3	4.315	2.231	-0.001	0	0	26.929
239			4	3.819	2.046	-0.001	0	-0.006	12.494
240			5	3.323	1.862	-0.001	0	-0.011	-0.697
241	13	M1	1	0	0.98	0.077	0	0	0
242			2	0	0.173	-0.043	0	0.142	-4.865
243			3	0	-0.635	-0.164	0	-0.732	-2.918
244			4	0	-0.089	0.108	0	-0.439	-1.686
245			5	0	0	0	0	0	0
246	13	M2	1	0	0.507	0.076	0	0	0
247			2	0	0.172	0.026	0	0.177	-1.189
248			3	0	-0.163	-0.024	0	0.179	-1.205
249			4	0	-0.498	-0.074	0	0.006	-0.049
250			5	0	0	0	0	0	0
251	13	M3	1	-0.124	-0.832	0	-0.011	0	0
252			2	-0.201	-0.897	0	-0.011	0.001	3.674
253			3	0.166	1.026	0	-0.004	0.001	8.169
254			4	0.089	0.961	0	-0.004	0.001	3.946
255			5	0.012	0.896	0	-0.004	0	0
256	13	M4	1	3.522	3.101	0	0	0	0
257			2	3.313	3.347	0	0	0.001	-21.761
258			3	2.407	-2.979	0	0	0	-30.394
259			4	2.198	-2.734	0	0	-0.003	-11.113
260			5	1.989	-2.488	0	0	-0.007	6.509

\qquad

Member Section Forces (Continued)

	LC	Member Label	Sec	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
261	14	M1	1	0	0.296	-0.078	0	0	0
262			2	0	-0.512	0.042	0	-0.152	0.912
263			3	0	-1.319	0.163	0	0.712	8.637
264			4	0	1.115	-0.106	0	0.427	5.145
265			5	0	0	0	0	0	0
266	14	M2	1	0	0.505	-0.076	0	0	0
267			2	0	0.17	-0.026	0	-0.177	-1.183
268			3	0	-0.165	0.024	0	-0.179	-1.193
269			4	0	-0.499	0.074	0	-0.006	-0.031
270			5	0	0	0	0	0	0
271	14	M3	1	0.124	-0.834	0	0.009	0	0
272			2	0.201	-0.899	0	0.009	0	3.682
273			3	-0.168	-0.177	0	0.009	0	-2.06
274			4	-0.091	-0.242	0	0.009	0	-1.169
275			5	-0.014	-0.308	0	0.009	0	0
276	14	M4	1	2.32	-3.024	0	0	0	0
277			2	2.111	-3.27	0	0	0	21.243
278			3	1.206	2.977	0	0	0	29.535
279			4	0.997	2.732	0	0	0	10.267
280			5	0.788	2.486	0	0	-0.001	-7.341

Maximum Member Section Forces

LC Member Label				Axial[k]	Loc[ft]y	Shear[k0.002	$\begin{gathered} \text {]Loc[ft]z Shear[k } \\ \hline 30.938 \\ \hline \end{gathered}$		Loc[ft]	$\frac{\text { Torque[k-ft }}{0}$	Loc[ft] 33.75	$\frac{y \text { Moment[k }}{0}$	Loc[ft]z-z Moment[k-ft]Loc[ft]		
1	1	M1	max	0									33.75	0.018	19.688
2			min	0	20.039	-0.001	0	0	0	0	0	0	19.688	0	0
3	1	M2	max	0	14	0	11.229	0	14	0	14	0	14	0	14
4			min	0	0	0	11.375	0	0	0	0	0	0	0	11.229
5	1	M3	max	0	5.49	0	5.49	0	5.49	0	17	0	5.49	0	17
6			min	0	5.667	-0.002	5.667	0	5.667	0	0	0	0	-0.018	5.667
7	1	M4	max	3.998	11.25	0.002	11.25	0	11.25	0	27	0	11.25	0	0
8			min	-0.002	11.531	0	11.531	0	11.531	0	0	0	27	-0.018	27
9	2	M1	max	0	33.75	3.06	20.039	0.01	19.688	0	33.75	0.195	19.688	19.007	19.688
10			min	0	20.039	-3.623	19.688	-0.017	20.039	0	0	0	0	-5.303	6.328
11	2	M2	max	0	14	0	14	0	14	0	14	0	14	0.004	11.229
12			min	0	0	0	0	0	0	0	0	0	0	0	0
13	2	M3	max	0.017	17	0.642	17	0	5.49	0.01	17	0.002	5.49	7.271	5.667
14			min	0	0	0	0	0	5.667	0.004	0	0	0	0	0
15	2	M4	max	0.642	27	-0.017	27	0	11.25	0	27	0.001	11.25	7.377	27
16			min	0.642	0	-0.632	0	0	11.531	0	0	-0.006	27	0	0
17	3	M1	max	0	33.75	0.489	19.688	0.261	20.039	0	33.75	0.302	5.273	0	33.75
18			min	0	20.039	-0.859	20.039	-0.291	19.688	0	0	-1.768	19.688	-9.623	19.688
19	3	M2	max	0	14	0.001	11.229	0.108	0	0	14	0.285	5.25	0	14
20			min	0	0	0	11.375	-0.121	11.229	0	0	-0.075	11.229	-0.014	11.229
21	3	M3	max	0.311	5.667	0.858	17	0	5.49	-0.009	17	0.001	5.49	9.728	5.667
22			min	-0.319	5.49	0.003	0	0	5.667	-0.014	0	0	0	-0.014	5.49
23	3	M4	max	0.858	27	4.956	11.25	0	11.25	0	27	0.001	11.25	9.885	27
24			min	0.858	0	-4.354	11.531	0	11.531	0	0	-0.004	27	-52.462	11.25
25	4	M1	max	0	30.938	0.857	30.938	0.291	19.688	0	33.75	1.766	19.688	9.6	19.688
26			min	0	0	-0.488	0	-0.261	20.039	0	0	-0.302	5.273	0	0
27	4	M2	max	0	11.229	0	14	0.121	11.229	0	14	0.075	11.229	0.014	11.229
28			min	0	11.375	-0.001	0	-0.108	0	0	0	-0.285	5.25	0	0
29	4	M3	max	0.319	5.49	0	5.49	0	17	0.014	5.49	0	17	0	17
30			min	-0.311	5.667	-0.857	5.667	0	0	0.009	5.667	-0.001	5.49	-9.717	5.667
31	4	M4	max	-0.856	10.969	4.346	11.531	0	27	0	27	0.004	27	52.363	11.25
32			min	-0.856	11.25	-4.947	11.25	0	0	0	0	-0.001	11.25	-9.859	27

Maximum Member Section Forces (Continued)

LC Member Label				Axial[k]L			Loc[ft]z	$\frac{z \text { Shear }[k}{0.002}$	$\frac{] \operatorname{Loc}[\mathrm{ft}] \mathrm{T}}{30.938}$	$\frac{\text { orque[k-f }}{0}$	Loc[ft]y-y Moment[k-ft]Loc[ft]z-z Moment[k-ft]Loc[ft]				
33	5	M1	max	0	33.75	2.193					33.75	0	33.75	12.907	19.688
34			min	0	20.039	-2.685	19.688	-0.001	0	0	0	-0.024	19.688	-4.577	6.68
35	5	M2	max	0	14	1.091	0	0	14	0	14	0	14	0.752	11.229
36			min	0	0	-1.224	11.229	0	0	0	0	0	0	-2.884	5.25
37	5	M3	max	0	5.49	1.008	5.667	0	5.49	0.006	17	0.002	5.49	10.355	5.49
38			min	-0.002	5.667	-1.977	5.49	0	5.667	-0.002	0	0	0	0	0
39	5	M4	max	6.291	0	0.078	11.25	0	11.25	0	27	0.001	11.25	0	0
40			min	2.991	27	0.002	11.531	-0.001	11.531	0	0	-0.008	27	-0.909	27
41	6	M1	max	0	33.75	2.195	20.039	0.002	30.938	0	33.75	0	33.75	12.925	19.688
42			min	0	20.039	-2.686	19.688	-0.001	0	0	0	-0.025	19.688	-4.571	6.68
43	6	M2	max	0	14	1.091	0	0	14	0	14	0	14	0.752	11.229
44			min	0	0	-1.224	11.229	0	0	0	0	0	0	-2.884	5.25
45	6	M3	max	0	5.49	1.006	5.667	0	5.49	0.006	17	0.002	5.49	10.355	5.49
46			min	-0.002	5.667	-1.977	5.49	0	5.667	-0.002	0	0	0	0	0
47	6	M4	max	10.29	0	0.08	11.25	0	11.25	0	27	0.001	11.25	0	0
48			min	2.989	27	0.002	11.531	-0.001	11.531	0	0	-0.008	27	-0.927	27
49	7	M1	max	0	33.75	5.254	20.039	0.009	19.688	0	33.75	0.172	19.688	31.921	19.688
50			min	0	20.039	-6.308	19.688	-0.015	20.039	0	0	0	0	-9.866	6.328
51	7	M2	max	0	14	1.09	0	0	14	0	14	0	14	0.756	11.229
52			min	-0.001	0	-1.225	11.229	0	0	0	0	0	0	-2.882	5.25
53	7	M3	max	0.015	17	1.649	5.667	0.001	5.49	0.016	17	0.004	5.49	16.563	5.667
54			min	0	0	-1.977	5.49	0	5.667	0.002	0	0	0	0	0
55	7	M4	max	6.933	0	-0.012	27	0	11.25	0	27	0.002	11.25	6.46	27
56			min	3.632	27	-0.557	0	-0.001	11.531	0	0	-0.014	27	0	0
57	8	M1	max	0	33.75	4.49	20.039	0.006	19.688	0	33.75	0.122	19.688	27.181	19.688
58			min	0	20.039	-5.403	19.688	-0.011	20.039	0	0	0	0	-8.536	6.328
59	8	M2	max	0	14	1.09	0	0	14	0	14	0	14	0.755	11.229
60			min	-0.001	0	-1.225	11.229	0	0	0	0	0	0	-2.883	5.25
61	8	M3	max	0.011	17	1.487	5.667	0.001	5.49	0.013	17	0.003	5.49	14.733	5.667
62			min	0	0	-1.977	5.49	0	5.667	0.001	0	0	0	0	0
63	8	M4	max	9.771	0	-0.009	27	0	11.25	0	27	0.002	11.25	4.604	27
64			min	3.47	27	-0.397	0	-0.001	11.531	0	0	-0.013	27	0	0
65	9	M1	max	0	33.75	1.904	0	0.185	20.039	0	33.75	0.203	5.273	7.895	19.688
66			min	0	20.039	-2.706	19.688	-0.205	19.688	0	0	-1.268	19.688	-7.74	8.086
67	9	M2	max	0	14	1.239	0	0.076	0	0	14	0.2	5.25	0.845	11.229
68			min	-0.001	0	-1.39	11.229	-0.085	11.229	0	0	-0.052	11.229	-3.28	5.25
69	9	M3	max	0.215	5.667	1.748	5.667	0.001	5.49	0	17	0.003	5.49	17.404	5.667
70			min	-0.223	5.49	-2.244	5.49	0	5.667	-0.012	0	0	0	0	0
71	9	M4	max	7.749	0	3.572	11.25	0	11.25	0	27	0.002	11.25	5.92	27
72			min	4	27	-3.058	11.531	-0.001	11.531	0	0	-0.012	27	-37.885	11.25
73	10	M1	max	0	33.75	3.094	20.039	0.202	19.688	0	33.75	1.212	19.688	21.412	19.688
74			min	0	20.039	-3.393	19.688	-0.18	20.039	0	0	-0.218	5.625	-3.163	5.273
75	10	M2	max	0	14	1.238	0	0.085	11.229	0	14	0.052	11.229	0.864	11.229
76			min	0	0	-1.392	11.229	-0.076	0	0	0	-0.2	5.25	-3.271	5.25
77	10	M3	max	0.223	5.49	0.541	5.667	0	5.49	0.013	17	0.002	5.49	11.764	5.49
78			min	-0.22	5.667	-2.246	5.49	0	5.667	0.007	0	0	0	0	0
79	10	M4	max	6.544	0	3.058	11.531	0	11.25	0	27	0.001	11.25	35.832	11.25
80			min	2.795	27	-3.39	11.25	0	11.531	0	0	-0.006	27	-7.973	27
81	11	M1	max	0	33.75	4.261	20.039	0.126	20.039	0	33.75	0.193	5.977	23.423	19.688
82			min	0	20.039	-5.419	19.688	-0.147	19.688	0	0	-0.811	19.688	-10.751	7.031
83	11	M2	max	0	14	1.202	0	0.057	0	0	14	0.15	5.25	0.824	11.229
84			min	-0.001	0	-1.349	11.229	-0.064	11.229	0	0	-0.039	11.229	-3.18	5.25
85	11	M3	max	0.174	5.667	2.043	5.667	0.001	5.49	0.009	17	0.004	5.49	20.814	5.667
86			min	-0.168	5.49	-2.178	5.49	0	5.667	-0.007	0	0	0	0	0
87	11	M4	max	10.864	0	2.216	10.969	0	10.969	0	27	0.002	11.25	9.726	27

Company : QCE
6/7/2023
Designer : MKS
9:49:02 AM
Job Number
Model Name :
Checked By :

Maximum Member Section Forces (Continued)

LC Member Label			Axial[k]Loc[ft]y Shear[k			Loc[ft]z	$\frac{z \text { Shear }[\mathrm{k}] \text { Loc }[\mathrm{ft]}]}{-0.001 \quad 11.25}$		$\frac{\text { orque[k-f }}{0}$	Loc[ft]y-y Moment[k-ft]Loc[ft]z-z Moment[k-ft]Loc[ft]					
		min	4.227	27	-2.311				0	-0.016	27	-23.285	11.25		
12	M1	max	0	33.75	5.166	20.039	0.159	19.688		0	33.75	1.05	19.688	33.562	19.688
		min	0	20.039	-5.934	19.688	-0.148	20.039	0	0	-0.127	4.922	-7.416	5.977	
12	M2	max	0	14	1.201	0	0.064	11.229	0	14	0.039	11.229	0.839	11.229	
		min	-0.001	0	-1.35	11.229	-0.057	0	0	0	-0.15	5.25	-3.173	5.25	
12	M3	max	0.168	5.49	1.137	5.667	0.001	5.49	0.019	17	0.003	5.49	11.413	5.49	
		min	-0.152	5.667	-2.179	5.49	0	5.667	0.008	0	0	0	0	0	
12	M4	max	9.96	0	2.285	11.531	0	11.25	0	27	0.002	11.25	32.018	11.25	
		min	3.323	27	-3	11.25	-0.001	11.531	0	0	-0.011	27	-0.697	27	
13	M1	max	0	33.75	0.98	0	0.184	20.039	0	33.75	0.208	5.273	0.327	30.938	
		min	0	20.039	-0.904	19.688	-0.204	19.688	0	0	-1.25	19.688	-5.021	10.195	
13	M2	max	0	14	0.507	0	0.076	0	0	14	0.2	5.25	0.34	11.229	
-		min	0	0	-0.568	11.229	-0.085	11.229	0	0	-0.052	11.229	-1.343	5.25	
13	M3	max	0.217	5.667	1.07	5.667	0	5.49	-0.004	17	0.002	5.49	11.138	5.667	
2		min	-0.223	5.49	-0.916	5.49	0	5.667	-0.011	0	0	0	0	0	
313	M4	max	3.522	0	3.511	11.25	0	11.25	0	27	0.001	11.25	6.509	27	
4		min	1.989	27	-3.051	11.531	0	11.531	0	0	-0.007	27	-37.19	11.25	
514	M1	max	0	33.75	1.619	20.039	0.203	19.688	0	33.75	1.226	19.688	12.726	19.688	
析		min	0	20.039	-1.588	19.688	-0.182	20.039	0	0	-0.214	5.625	-0.456	3.164	
714	M2	max	0	14	0.505	0	0.085	11.229	0	14	0.052	11.229	0.359	11.229	
8		min	0	0	-0.569	11.229	-0.076	0	0	0	-0.2	5.25	-1.334	5.25	
914	M3	max	0.223	5.49	-0.134	5.667	0	5.49	0.009	17	0	5.49	4.809	5.49	
-		min	-0.219	5.667	-0.918	5.49	0	5.667	0.009	0	0	0	-2.501	5.667	
114	M4	max	2.32	0	3.049	11.531	0	11.25	0	27	0	11.25	36.326	11.25	
2		min	0.788	27	-3.434	11.25	0	11.531	0	0	-0.001	27	-7.341	27	

Member End Reactions

	LC	Member Label	Member End	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
	1	M1	I	0	-0.001	0	0	0	0
2			J	0	0	0	0	0	0
3	1	M2	1	0	0	0	0	0	0
4			J	0	0	0	0	0	0
5	1	M3	1	0	0	0	0	0	0
6			J	0	-0.002	0	0	0	0
7	1	M4	I	3.998	0.002	0	0	0	0
8			J	-0.002	0	0	0	0	-0.018
9	2	M1	I	0	1.692	0.01	0	0	0
0			J	0	0	0	0	0	0
1	2	M2	I	0	0	0	0	0	0
			J	0	0	0	0	0	0
3	2	M3	I	0	0	0	0.004	0	0
,			J	0.017	0.642	0	0.01	0	0
15	2	M4	I	0.642	-0.632	0	0	0	0
6			J	0.642	-0.017	0	0	-0.006	7.377
7	3	M1	I	0	0.489	0.111	0	0	0
8			J	0	0	0	0	0	0
9	3	M2	I	0	0.001	0.108	0	0	0
0			J	0	0	0	0	0	0
1	3	M3	1	-0.178	0.003	0	-0.014	0	0
,			J	0.019	0.858	0	-0.009	0	0
3	3	M4	1	0.858	4.371	0	0	0	0
24			J	0.858	-3.549	0	0	-0.004	9.885
25	4	M1	I	0	-0.488	-0.111	0	0	0
			J	0	0	0	0	0	0
7	4	M2	1	0	-0.001	-0.108	0	0	0

Company : QCE
6/7/2023
Designer : MKS
9:49:02 AM
Job Number :
Model Name :
\qquad

Member End Reactions (Continued)
LC Member Label Member End Axial[k] y Shear[k] z Shear[k] Torque[k-ft] y-y Moment[k-ft] z-z Moment[k-ft]

28			J	0	0	0	0	0	0
29	4	M3	1	0.178	0	0	0.014	0	0
30			J	-0.019	-0.857	0	0.009	0	0
31	4	M4	1	-0.856	-4.362	0	0	0	0
32			J	-0.856	3.541	0	0	0.004	-9.859
33	5	M1	1	0	1.374	-0.001	0	0	0
34			J	0	0	0	0	0	0
35	5	M2	1	0	1.091	0	0	0	0
36			J	0	0	0	0	0	0
37	5	M3	1	0	-1.796	0	-0.002	0	0
38			J	-0.002	0.633	0	0.006	0	0
39	5	M4	I	6.291	0.078	0	0	0	0
40			J	2.991	0.002	-0.001	0	-0.008	-0.909
41	6	M1	1	0	1.373	-0.001	0	0	0
42			J	0	0	0	0	0	0
43	6	M2	1	0	1.091	0	0	0	0
44			J	0	0	0	0	0	0
45	6	M3	1	0	-1.796	0	-0.002	0	0
46			J	-0.002	0.632	0	0.006	0	0
47	6	M4	1	10.29	0.08	0	0	0	0
48			J	2.989	0.002	-0.001	0	-0.008	-0.927
49	7	M1	1	0	3.066	0.009	0	0	0
50			J	0	0	0	0	0	0
51	7	M2	1	-0.001	1.09	0	0	0	0
52			J	0	0	0	0	0	0
53	7	M3	1	0	-1.796	0.001	0.002	0	0
54			J	0.015	1.274	0	0.016	0	0
55	7	M4	1	6.933	-0.557	0	0	0	0
56			J	3.632	-0.012	-0.001	0	-0.014	6.46
57	8	M1	1	0	2.642	0.006	0	0	0
58			J	0	0	0	0	0	0
59	8	M2	1	-0.001	1.09	0	0	0	0
60			J	0	0	0	0	0	0
61	8	M3	1	0	-1.796	0.001	0.001	0	0
62			J	0.011	1.113	0	0.013	0	0
63	8	M4	1	9.771	-0.397	0	0	0	0
64			J	3.47	-0.009	-0.001	0	-0.013	4.604
65	9	M1	1	0	1.904	0.076	0	0	0
66			J	0	0	0	0	0	0
67	9	M2	1	-0.001	1.239	0.076	0	0	0
68			J	0	0	0	0	0	0
69	9	M3	1	-0.124	-2.038	0.001	-0.012	0	0
70			J	0.011	1.323	0	0	0	0
71	9	M4	1	7.749	3.163	0	0	0	0
72			J	4	-2.495	-0.001	0	-0.012	5.92
73	10	M1	1	0	1.217	-0.079	0	0	0
74			J	0	0	0	0	0	0
75	10	M2	1	0	1.238	-0.076	0	0	0
76			J	0	0	0	0	0	0
77	10	M3	1	0.124	-2.04	0	0.007	0	0
78			J	-0.016	0.116	0	0.013	0	0
79	10	M4	1	6.544	-2.98	0	0	0	0
80			J	2.795	2.495	0	0	-0.006	-7.973
81	11	M1	1	0	3.04	0.064	0	0	0
82			J	0	0	0	0	0	0

\qquad

Member End Reactions (Continued)

	LC	Member Label	Member End	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-ft]	y-y Moment[k-ft]	z-z Moment[k-ft]
83	11	M2	I	-0.001	1.202	0.057	0	0	0
84			J	0	0	0	0	0	0
85	11	M3	1	-0.093	-1.978	0.001	-0.007	0	0
86			J	0.02	1.63	0	0.009	0	0
87	11	M4	1	10.864	1.916	0	0	0	0
88			J	4.227	-1.881	-0.001	0	-0.016	9.726
89	12	M1	I	0	2.525	-0.052	0	0	0
90			J	0	0	0	0	0	0
91	12	M2	I	-0.001	1.201	-0.057	0	0	0
92			J	0	0	0	0	0	0
93	12	M3	1	0.093	-1.979	0.001	0.008	0	0
94			J	0.001	0.724	0	0.019	0	0
95	12	M4	I	9.96	-2.692	0	0	0	0
96			J	3.323	1.862	-0.001	0	-0.011	-0.697
97	13	M1	1	0	0.98	0.077	0	0	0
98			J	0	0	0	0	0	0
99	13	M2	I	0	0.507	0.076	0	0	0
100			J	0	0	0	0	0	0
101	13	M3	I	-0.124	-0.832	0	-0.011	0	0
102			J	0.012	0.896	0	-0.004	0	0
103	13	M4	1	3.522	3.101	0	0	0	0
104			J	1.989	-2.488	0	0	-0.007	6.509
105	14	M1	1	0	0.296	-0.078	0	0	0
106			J	0	0	0	0	0	0
107	14	M2	I	0	0.505	-0.076	0	0	0
108			J	0	0	0	0	0	0
109	14	M3	I	0.124	-0.834	0	0.009	0	0
110			J	-0.014	-0.308	0	0.009	0	0
111	14	M4	I	2.32	-3.024	0	0	0	0
112			J	0.788	2.486	0	0	-0.001	-7.341

Beam Deflections

	LC	Member Label	Span	Location [ft]	y^{\prime} [in]	(n) L'/y' Ratio
1	1	M1	1	19.688	0	NC
2			2	33.75	-0.001	NC
3	1	M2	1	14	0	NC
4	1	M3	1	5.49	0	NC
5			2	17	0	NC
6	2	M1	1	19.688	0.001	NC
7			2	33.75	-0.355	945
8	2	M2	1	14	0	NC
9	2	M3	1	5.49	0	NC
10			2	17	-0.145	1906
11	3	M1	1	11.25	-0.059	4044
12			2	33.75	0.354	949
13	3	M2	1	14	0	NC
14	3	M3	1	5.49	0	NC
15			2	17	-0.194	1424
16	4	M1	1	11.25	0.058	4053
17			2	33.75	-0.353	951
18	4	M2	1	14	0	NC
19	4	M3	1	5.49	0	NC
20			2	17	0.194	1426
21	5	M1	1	7.383	-0.025	9370
22			2	33.75	-0.212	1582

\qquad

Beam Deflections (Continued)

	LC	Member Label	Span	Location [ft]	y' [in]	(n) L'/y' Ratio
23	5	M2	1	14	0.042	7912
24	5	M3	1	0	-0.049	2673
25			2	17	-0.175	1576
26	6	M1	1	7.383	-0.025	9404
27			2	33.75	-0.213	1577
28	6	M2	1	14	0.042	7912
29	6	M3	1	0	-0.049	2673
30			2	17	-0.175	1579
31	7	M1	1	7.031	-0.048	4941
32			2	33.75	-0.568	591
33	7	M2	1	14	0.042	7918
34	7	M3	1	0	-0.049	2672
35			2	17	-0.32	863
36	8	M1	1	7.031	-0.042	5613
37			2	33.75	-0.48	700
38	8	M2	1	14	0.042	7916
39	8	M3	1	0	-0.049	2672
40			2	17	-0.283	974
41	9	M1	1	9.141	-0.066	3614
42			2	25.313	0.01	NC
43	9	M2	1	14	0.048	6954
44	9	M3	1	0	-0.056	2355
45			2	17	-0.335	823
46	10	M1	1	15.117	0.032	7444
47			2	33.75	-0.49	686
48	10	M2	1	14	0.048	6978
49	10	M3	1	0	-0.056	2353
50			2	17	-0.063	4401
51	11	M1	1	8.086	-0.071	3351
52			2	33.75	-0.315	1068
53	11	M2	1	14	0.047	7174
54	11	M3	1	0	-0.054	2427
55			2	17	-0.403	684
56	12	M1	1	16.172	0.032	7447
57			2	33.75	-0.688	488
58	12	M2	1	14	0.047	7194
59	12	M3	1	0	-0.054	2425
60			2	17	-0.199	1387
61	13	M1	1	9.844	-0.05	4726
62			2	33.75	0.15	2245
63	13	M2	1	3.792	0.001	NC
64	13	M3	1	0	-0.023	5769
65			2	17	-0.217	1271
66	14	M1	1	13.359	0.035	6777
67			2	33.75	-0.346	970
68	14	M2	1	3.792	0.001	NC
69	14	M3	1	0	-0.023	5756
70			2	17	0.054	5064

AISC 15TH (360-16): ASD Member Steel Code Checks

LC Member Shape UC Max Loc[ft] Shear UC Loc[ft] Dir Pnc/om [k]Pnt/om [k] Mnyy/om [k-ft] Mnzz/om [k-ft] Cb Eqn

1	1	M3	W10X33	0	17	0	5.49	z	129.682	290.719	34.93	96.806	$1.885 \mathrm{H} 1-1 \mathrm{~b}^{*}$
2	1	M4	W16X67	0.023	11.25	0	11.25	y	170.388	586.826	88.573	219.402	$1.13 \mathrm{H} 1-1 \mathrm{~b}^{*}$
3	2	M3	W10X33	0.075	5.667	0.016	17	y	129.682	290.719	34.93	96.806	$1.887 \mathrm{H} 1-1 \mathrm{~b}$
4	2	M4	W16X67	0.036	27	0.005	11.25	y	170.388	586.826	88.573	219.25	$1.13 \mathrm{H} 1-1 \mathrm{~b}$

AISC 15TH (360-16): ASD Member Steel Code Checks (Continued)

LC Member Shape UC Max Loc[ft] Shear UC Loc[ft] Dir Pnc/om [k]Pnt/om [k] Mnyy/om [k-ft] Mnzz/om [k-ft] Cb Eqn

5	3	M3	W10X33	0.102	5.667	0.019	17	y	129.682	290.719	34.93	96.806	1.886	H1-1b
6	3	M4	W16X67	0.184	11.25	0.038	11.25	y	170.388	586.826	88.573	289.257	1.49	H1-1b
7	4	M3	W10X33	0.101	5.667	0.019	17	y	129.682	290.719	34.93	96.806	1.887	H1-1b
8	4	M4	W16X67	0.182	11.25	0.038	11.25	y	170.388	586.826	88.573	289.259	1.49	H1-1b
9	5	M3	W10X33	0.107	5.49	0.036	5.49	y	129.682	290.719	34.93	96.806	1.524	H1-1b
10	5	M4	W16X67	0.037	0	0.001	11.25	y	170.388	586.826	88.573	218.573	1.126	H1-1b*
11	6	M3	W10X33	0.107	5.49	0.036	5.49	y	129.682	290.719	34.93	96.806	1.525	H1-1b
12	6	M4	W16X67	0.06	0	0.001	11.25	y	170.388	586.826	88.573	218.574	1.126	H1-1b*
13	7	M3	W10X33	0.171	5.667	0.036	5.667	y	129.682	290.719	34.93	96.806	1.587	H1-1b
14	7	M4	W16X67	0.047	11.25	0.004	11.25	y	170.388	586.826	88.573	218.418	1.125	H1-1b
15	8	M3	W10X33	0.152	5.667	0.035	5.49	y	129.682	290.719	34.93	96.806	1.557	H1-1b
16	8	M4	W16X67	0.057	0	0.003	11.25	y	170.388	586.826	88.573	218.456	1.125	H1-1b*
17	9	M3	W10X33	0.181	5.667	0.045	5.49	y	129.682	290.719	34.93	96.806	1.567	H1-1b
18	9	M4	W16X67	0.152	11.25	0.028	11.25	y	170.388	586.826	88.573	286.541	1.476	H1-1b
19	10	M3	W10X33	0.122	5.49	0.043	5.49	y	129.682	290.719	34.93	96.806	2.153	H1-1b
20	10	M4	W16X67	0.139	11.25	0.026	11.25	y	170.388	586.826	88.573	292.139	1.505	H1-1b
21	11	M3	W10X33	0.216	5.667	0.042	5.49	y	129.682	290.719	34.93	96.806	1.619	H1-1b
22	11	M4	W16X67	0.105	11.25	0.018	11.25	y	170.388	586.826	88.573	309.944	1.597	H1-1b
23	12	M3	W10X33	0.119	5.49	0.042	5.49	y	129.682	290.719	34.93	96.806	1.504	H1-1b
24	12	M4	W16X67	0.143	11.25	0.023	11.25	y	170.388	586.826	88.573	275.83	1.421	H1-1b
25	13	M3	W10X33	0.116	5.667	0.021	5.49	y	129.682	290.719	34.93	96.806	1.67	H1-1b
26	13	M4	W16X67	0.138	11.25	0.027	11.25	y	170.388	586.826	88.573	288.12	1.484	H1-1b
27	14	M3	W10X33	0.051	5.49	0.02	5.49	y	129.682	290.719	34.93	96.806	1.726	H1-1b
28	14	M4	W16X67	0.131	11.25	0.027	11.25	y	170.388	586.826	88.573	290.412	1.496	H1-1b

AWC NDS-18: ASD Member Wood Code Checks

LC Member Shape UC MaxLoc[ft]Shear UCLoc[ft] Dir Fc' [ksi] \quad Ft' [ksi] \quad Fb1' [ksi] Fb2' [ksi] Fv' [ksi] RB \quad CL \quad CP \quad Eqn

\qquad

Envelope Node Reactions

Node Label			X [k]	LC	Y [k]	LC	Z [k]	$\frac{\mathrm{LC}}{4}$	$\frac{\mathrm{MX}[\mathrm{k}-\mathrm{ft}]}{0}$	$\frac{\mathrm{LC}}{14}$	$\frac{\mathrm{MY}[\mathrm{k}-\mathrm{ft}]}{0}$	$\begin{array}{r} \mathrm{LC} \\ \hline 14 \\ \hline \end{array}$	$\frac{\mathrm{MZ}[\mathrm{k}-\mathrm{ft}]}{0}$	LC
1	N11	max	0	11	3.066	7	0.111							
2		min	0	4	-0.488	4	-0.111	3	0	1	0	1	0	1
3	N9	max	0	11	11.73	7	0.558	4	0	14	0	14	0	14
4		min	0	4	-1.348	3	-0.559	3	0	1	0	1	0	1
5	N8	max	0.001	11	1.239	9	0.108	4	0	14	0	14	0	14
6		min	0	4	-0.001	4	-0.108	3	0	1	0	1	0	1
7	N1	max	0	11	10.864	11	4.371	3	0	14	0	14	0	14
8		min	0	4	-0.856	4	-4.362	4	0	1	0	1	0	1
9	N2	max	0	4	0	14	9.312	4	0	14	0	14	0	14
10		min	-0.001	11	0	1	-9.32	3	0	1	0	1	0	1
11	Totals:	max	0	11	24.937	12	5.727	4						
12		min	0	4	0	3	-5.727	3						

Envelope Node Displacements

Node Label			X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
1	N1	max	0	4	0	4	0	4	$5.475 \mathrm{e}-4$	4	$1.455 \mathrm{e}-6$	11	$2.378 \mathrm{e}-7$	11
2		min	0	11	0	11	0	3	-5.486e-4	3	-3.964e-7	4	-6.552e-8	4
3	N2	max	0	11	0	4	0	3	$1.331 \mathrm{e}-3$	3	$1.455 \mathrm{e}-6$	11	$1.322 \mathrm{e}-7$	4
4		min	0	4	-0.003	11	0	4	-1.329e-3	4	-3.964e-7	4	-4.799e-7	11
5	N3	max	0	4	0.001	4	0.559	3	3.403e-3	3	$1.455 \mathrm{e}-6$	11	$4.929 \mathrm{e}-6$	11
6		min	0	11	-0.005	11	-0.558	4	-3.396e-3	4	-3.964e-7	4	-1.349e-6	4
7	N4	max	0	4	0.225	4	0.559	3	0	14	$3.793 \mathrm{e}-3$	3	$1.666 \mathrm{e}-3$	3
8		min	0	11	-0.227	9	-0.558	4	0	1	-3.785e-3	4	-1.664e-3	4
9	N5	max	0	4	0.275	3	0.56	3	0	14	$5.07 \mathrm{e}-3$	3	$4.768 \mathrm{e}-3$	12
10		min	0	11	-0.529	12	-0.558	4	0	1	-5.06e-3	4	-2.39e-3	3
11	N6	max	0	4	0.28	4	0.685	3	0	14	3.82e-3	3	$1.666 \mathrm{e}-3$	3
12		min	0	11	-0.28	3	-0.684	4	0	1	-3.812e-3	4	-1.664e-3	4
13	N7	max	0	4	0.354	3	0.727	3	0	14	5.097e-3	3	$4.798 \mathrm{e}-3$	12
14		min	0	11	-0.688	12	-0.726	4	0	1	-5.087e-3	4	-2.39e-3	3
15	N8	max	0	4	0	4	0	3	0	14	$4.552 \mathrm{e}-3$	3	$1.928 \mathrm{e}-3$	9
16		min	0	11	0	9	0	4	0	1	-4.544e-3	4	-1.665e-3	4
17	N9	max	0	4	0	3	0	3	0	14	$1.991 \mathrm{e}-3$	3	$1.756 \mathrm{e}-3$	12
18		min	0	11	0	7	0	4	0	1	-1.986e-3	4	-1.293e-3	3
19	N11	max	0	4	0	4	0	3	0	14	$2.834 \mathrm{e}-4$	11	$1.227 \mathrm{e}-3$	11
20		min	0	11	0	7	0	4	0	1	-2.603e-4	4	-6.335e-4	4

Envelope Member Section Forces

Member Sec				Axial[k]	LC y Shear[k]		LC z Shear[k]		LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
1	M1	1	max	0	14	3.066	7	0.111	3	0	14	0	14	0	14
2			min	0	1	-0.488	4	-0.111	4	0	1	0	1	0	1
3		2	max	0	14	0.489	3	0.061	4	0	14	0.211	3	4.114	4
4			min	0	1	-1.1	12	-0.061	3	0	1	-0.212	4	-10.354	11
5		3	max	0	14	0.489	3	0.233	4	0	14	1.029	4	18.57	12
6			min	0	1	-4.969	7	-0.233	3	0	1	-1.031	3	-8.248	3
7		4	max	0	4	2.9	12	0.153	3	0	14	0.617	4	11.153	12
8			min	0	11	-0.859	3	-0.153	4	0	1	-0.618	3	-4.876	3
9		5	max	0	14	0	14	0	14	0	14	0	14	0	14
10			min	0	1	0	1	0	1	0	1	0	1	0	1
11	M2	1	max	0	4	1.239	9	0.108	3	0	14	0	14	0	14
12			min	-0.001	11	-0.001	4	-0.108	4	0	1	0	1	0	1
13		2	max	0	4	0.42	9	0.037	3	0	14	0.253	3	0.004	4
14			min	-0.001	11	-0.001	4	-0.037	4	0	1	-0.253	4	-2.904	9

Envelope Member Section Forces (Continued)

Member Sec				Axial[k]	LC	y Shear[k]		z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
15		3	max	0	4	0.001	3	0.035	4	0	14	0.255	3	0.008	4
16			min	-0.001	11	-0.401	10	-0.035	3	0	1	-0.255	4	-2.939	9
17		4	max	0	4	0.001	3	0.106	4	0	14	0.008	3	0.013	4
18			min	-0.001	11	-1.221	10	-0.106	3	0	1	-0.008	4	-0.106	9
19		5	max	0	14	0	14	0	14	0	14	0	14	0	14
20			min	0	1	0	1	0	1	0	1	0	1	0	1
21	M3	1	max	0.178	4	0.003	3	0.001	11	0.014	4	0	14	0	14
22			min	-0.178	3	-2.04	10	0	4	-0.014	3	0	1	0	1
23		2	max	0.287	4	0.003	3	0.001	11	0.014	4	0.003	11	9.009	10
24			min	-0.287	3	-2.199	10	0	4	-0.014	3	-0.001	4	-0.011	3
25		3	max	0.238	3	1.94	11	0	4	0.019	12	0.003	11	15.172	11
26			min	-0.238	4	-0.857	4	0	11	-0.009	3	-0.001	4	-7.288	4
27		4	max	0.129	3	1.785	11	0	4	0.019	12	0.002	11	7.257	11
28			min	-0.129	4	-0.857	4	0	11	-0.009	3	0	4	-3.644	4
29		5	max	0.02	11	1.63	11	0	4	0.019	12	0	14	0	14
30			min	-0.019	4	-0.857	4	0	11	-0.009	3	0	1	0	1
31	M4	1	max	10.864	11	4.371	3	0	11	0	14	0	14	0	14
32			min	-0.856	4	-4.362	4	0	4	0	1	0	1	0	1
33		2	max	10.368	11	4.722	3	0	11	0	14	0.001	11	30.628	4
34			min	-0.856	4	-4.713	4	0	4	0	1	0	4	-30.687	3
35		3	max	5.219	11	4.243	4	0	4	0	14	0	4	42.685	4
36			min	-0.856	4	-4.251	3	-0.001	11	0	1	0	11	-42.766	3
37		4	max	4.723	11	3.892	4	0	4	0	14	0.002	4	15.227	4
38			min	-0.856	4	-3.9	3	-0.001	11	0	1	-0.008	11	-15.255	3
39		5	max	4.227	11	3.541	4	0	4	0	14	0.004	4	9.885	3
40			min	-0.856	4	-3.549	3	-0.001	11	0	1	-0.016	11	-9.859	4

Envelope Member End Reactions

Envelope Maximum Member Section Forces

Member			Axial[k]Loc[ft]LCy Shear[k]Loc[ft]LCz Shear[k]Loc[ft]LcTorque[k-ft]Loc[ft]LC y-y Moment[k-ft]Loc[ft]LCz-z Moment[k-ft]Loc[ft]LC													
1	M1	max	0	30.938	4	5.254	20.0397	0.291	19.6884	0	33.75		1.766	19.6884	33.562	19.68812
2		min	0	20.039		-6.308	19.6887	-0.291	19.6883	0	0	1	-1.768	19.6883	-10.751	7.03111
3	M2	max	0	11.229	4	1.239	09	0.121	11.2294	0	14	14	0.285	5.253	0.864	11.22910
4		min	-0.001	0	11	-1.392	11.22910	-0.121	11.2293	0	0	1	-0.285	5.254	-3.28	5.259
5	M3	max	0.319	5.49	4	2.043	5.66711	0.001	5.4911	0.019	17	12	0.004	5.4911	20.814	5.66711

\qquad
Model Name :

Envelope Maximum Member Section Forces (Continued)

Member Axial[k]Loc[ft]LCy Shear[k]Loc[ft]LCz Shear[k]Loc[ft]LCTorque[k-ft]Loc[ft]LCy-y Moment[k-ft]Loc[ft]LCz-z Moment[k-ft]Loc[ft]LC

6		$\min -0.319$	5.49	3	-2.246	5.49	10	0	5.667	11	-0.014	0	3	-0.001	5.49	4	-9.717	5.667	4
7	M 4	$\max 10.864$	0	11	4.956	11.25	3	0	27	4	0	27	14	0.004	27	4	52.363	11.25	4
8		$\min -0.856$	11.25	4	-4.947	11.25	4	-0.001	11.25	11	0	0	1	-0.016	27	11	-52.462	11.25	3

Material Take-Off

Material		Size	Length[ft]	Weight[K]	
1	Hot Rolled Steel				
2	A992	W10X33	1	17	0.562
3	A992	W16X67	1	27	1.801
4	Total HR Steel		2	44	2.362
5					
6	Wood	$5.125 X 21 F S$	2	47.8	1.249
7	24F-1.8E DF Balanced		2	47.8	1.249
8	Total Wood				

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040
Quantum Job Number: 23127.01

LATERAL DESIGN - MAIN HOUSE

Structure: Hong-Koa Residence
Address: 5425 W. Mercer Way Mercer Island, WA 98040
Latitude:

Structure Classification

Risk Category : II per ASCE Table 1.5-1

Seismic Force-Resisting System: Light-Framed Wood Walls Sheathed with Structural Panels

| $\mathrm{R}:$ | $\mathbf{6 1 / 2}$ | per ASCE Table 12.2-1 |
| ---: | :--- | :--- | :--- |
| $\mathrm{W}_{\mathrm{o}}:$ | $\mathbf{3}$ | per ASCE Table 12.2-1 |
| $\mathrm{C}_{\mathrm{d}}:$ | $\mathbf{4}$ | per ASCE Table 12.2-1 |
| $\mathrm{h}_{\mathrm{n}}(\mathrm{ft}):$ | 32.00 | height above the base to the highest level of the structure |

Site Ground Motion

Reg. Structure/5 Stories Max:	Yes	Sds $(\max)=1.0$	Per ASCE 12.8.1.3	
$\mathrm{S}_{1}(\mathrm{~g}-\mathrm{sec}):$	0.51	$\mathrm{~S}_{\mathrm{S}}(\mathrm{g}-\mathrm{sec}):$	1.45	
Site Class:	D		Per Geotechnical Report	per ASCE 11.4.3

F 1.79

Fundamental Period per ASCE 12.8.2

Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

C_{s} :	0.15	$=S_{\text {DS }} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)$ per ASCE Eq. 12.8-2
$\mathrm{C}_{\text {s-max }}$:	0.35	$=S_{D 1} /\left(T_{a}^{*} \mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)$ for $\mathrm{T}<=\mathrm{T}_{\mathrm{L}}$ per ASCE Eq. 12.8-3
$\mathrm{C}_{\text {s-max }}$:	--	$=S_{D 1}{ }^{*} T_{L} /\left(T_{a}{ }^{2}{ }^{R} / I_{E}\right)$ for $T>T_{L}$ per ASCE Eq. 12.8-4
$\mathrm{C}_{\text {s-min }}$:	0.04	per ASCE Eq. 12.8-5
$\mathrm{C}_{\text {s-min }}$:	--	$=0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)$ for $\mathrm{S}_{1}=>0.6 \mathrm{~g}$ per ASCE Eq. 12.8-6
$\mathrm{C}_{\text {s-use }}$:	0.15	
	.149 W	$=\mathrm{C}_{\text {S-use }}{ }^{*} \mathrm{~W}$ per ASCE Eq. 12.8-1

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	0.97	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.27	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\begin{aligned}
F_{x} & =C_{v x} V \text { per ASCE Eq. 12.8-11 } \\
C_{v x} & =\left(w_{x} h_{x}^{k}\right) /\left(S w_{i} h_{i}^{k}\right) \text { per ASCE Eq. 12.8-12 }
\end{aligned}
$$

Level	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{w}_{\mathrm{x}}(\mathrm{k})$	\% of $\mathrm{W}_{\text {total }}$	$\mathrm{w}_{\mathrm{x}}{ }^{*} \mathrm{~h}^{\text {k }}$	C_{vx} (\%)	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{V}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}} / \mathrm{w}_{\mathrm{x}}$
High Roof	32.00	80.7	17.7\%	2583.4	30.2\%	20.45	20.45	0.253
Upper Floor	21.00	202.2	44.4\%	4246.6	49.7\%	33.61	54.06	0.166
Main Floor	10.00	172.2	37.8\%	1722.1	20.1\%	13.63	67.69	0.079
Total WT (k): 455.16 Sum: 8552								
$\mathrm{C}_{\text {s-use }}$: 0.149								
$\mathrm{V}(\mathrm{k}): \mathbf{6 7 . 6 9}$ per ASCE 12.8.1								

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
F_{p x} & =\left(S F_{i} / S_{w_{i}}\right)^{*} w_{p x} \text { per ASCE Eq 12.10-1 } \\
F_{p x-m a x} & =\left.0.4^{*} S_{D s}\right|_{E}{ }^{*} w_{p x} \text { per per ASCE 12.10.1.1 } \\
F_{p x-m i n} & =0.2^{*} S_{D S}{ }^{*} I_{E}{ }^{*} w_{p x} \text { per per ASCE 12.10.1.1 }
\end{aligned}
$$

Diaphragm/Story

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
High Roof	80.73	80.73	20.45	20.45	$\mathbf{2 0 . 4 5}$	
Upper Floor	202.22	282.95	33.61	54.06	39.10	$=\mathrm{Fp}-\mathrm{min}$
Main Floor	172.21	455.16	13.63	67.69	$\mathbf{3 3 . 2 9}$	$=\mathrm{Fp}-\mathrm{min}$

Project: \quad Hong \& Kao

Date:	$6 / 7 / 23$	Job No:	23127.01
Designer: MKS	Sheet:	2	
Checked By:			

Wind Loads Criteria
Per IBC 2021 \& ASCE 7-16

Wind Load Criteria

Risk Category:	II	Table 1.5-1
Basic Wind Speed:	97	Figure 26.5.1
Exposure Category:	C	Section 26.7.3
Ground Elevation:	35 ft	
Wall Ht:	31.0 ft	

Roof Type:	Flat	$<=3 \mathrm{deg}$
Roof Slope:	$0.0: 12$	0.0 DEG
Mean Roof HT:	31.0 ft	UP TO 160FT
Parapet:	Yes	
Parapet Elevation:	32.0 ft	UP TO 160FT

Wind Topographic Factor, $K_{z t}$:
per Section 26.8

$L_{h}:$		dist upwind of crest to half ht of hill or escarp.
$\mathrm{H}:$		ht. of hill or escarp. relative to the upwind terrain
$\mathrm{X}:$		dist. (upwind or downwind) from the crest to the building
$\mathrm{z}:$		height above ground surface at building site
$\mathrm{K}_{\mathrm{zt}}:$	NA	equation $26.8-1$
$\mathrm{~K}_{\mathrm{zt}}:$	1.00	manually input

$\mathbf{K}_{\mathrm{e}}: \quad \mathbf{0 . 9 9 9}$ ASCE 26.10.1
$K_{d}: \quad 0.85$ ASCE 26.6

Wind Loads - Main Wind Force Resisting System

Per IBC 2021 \& ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Wind Load Criteria

Risk Category:	II	Table 1.5-1	$\mathrm{K}_{\mathrm{e}}:$	$\mathbf{0 . 9 9 8 7}$	Section 26.10 .1
Basic Wind Speed:	$\mathbf{9 7} \mathbf{~ m p h}$	Figure 26.5.1	$\mathrm{K}_{\mathrm{d}}:$	$\mathbf{0 . 8 5}$	Section 26.6
Exposure Category:	\mathbf{C}	Section 26.7.3	$\mathbf{0 . 8 5}$	Section 26.11	
$\mathrm{~K}_{\mathrm{zt}}:$	$\mathbf{1 . 0 0}$	Section 26.8	Wall Height:	$\mathbf{3 1 . 0} \mathbf{f t}$	
			Parapet Elevation:	$\mathbf{3 2 . 0} \mathbf{f t}$	

Wall Pressures:

L/B Ratio:

Short Dimension:	$\mathbf{6 2 . 0} \mathrm{ft}$
Long Dimension:	80.0 ft
nsverse Wind L/B:	0.78
gitudinal Wind L/B:	1.29

*NOTE: INTERNAL BUILDING PRESSURE CANCEL
EACH OTHER OUT IN ENCLOSED BUILDING

$\mathrm{K}_{\mathrm{h}} \& \mathrm{~K}_{\mathrm{z}}:$	0.989	At Top of Wall
$\mathrm{K}_{\mathrm{z}}:$	0.85	0 ft to 15 ft
$\mathrm{Kp}:$	1.00	At Top of Parapet

Transverse
Longitudinal
Wind Direction
21.3 psf
19.4 psf

ASCE EQ 27.3-1
ASCE EQ 27.3-1

Parapet: 50.9 psf (Parapet) ASCE EQ 27.3-3
*Enveloped Leeward and Windward Pressure
*All Values Ultimate (multiply $\times 0.6$ for ASD)

Project:	Hong \& Kao	Date: $6 / 7 / 23$	Job No: \#\#\#\#\#\#\#	
		Designer: MKS	Sheet: 2	
Client:	Chesmore Buck	Checked By:		

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Roof Pressure:

Slope: $0.0: 12=0.0$ DEGREES
Mean Roof HT:
Building Dimension: $\quad 62.0 \mathrm{ft}$ Parallel to Ridge
Building Dimension: 80.0 ft Normal to Ridge
$\mathrm{K}_{\mathrm{h}} \& \mathrm{~K}_{\mathrm{z}}: \quad 0.989$ At Mean Roof Ht
FLAT ROOF
Windward Pressure
LC 1 LC 2
tal

0 to $\mathrm{h} / 2$	-19.1 psf	0.5 psf	0.0 psf	0.0 psf
$\mathrm{h} / 2$ to h	-19.1 psf	0.5 psf	0.0 psf	0.0 psf
h to 2 h	-12.2 psf	0.5 psf	0.0 psf	0.0 psf
$>2 \mathrm{~h}$	-8.8 psf	0.5 psf	0.0 psf	0.0 psf

$\mathrm{h} / 2$ to h
-19.1 psf
0.5 psf
$>2 h$ -8.8 psf 0.5 psf

LC 1 LC 2
0.0 psf 0.0 psf
0.0 psf 0.0 psf
0.0 psf 0.0 psf
0.0 psf 0.0 psf

ELEVATION
*Negative indicates pressure away from surface
*Total horizontal shear shall not be less than that determined by neglecting roof wind forces
*All Values Ultimate (multiply $\times 0.6$ for ASD)

Roof Overhang (PSF)

$$
P_{\text {ovh }}:-32.9 \mathrm{psf} \quad 0.0 \mathrm{psf}
$$

Minimum Total Projected Horizontal Pressure (PSF)
8.0 psf

ASCE 27.1.5
\ldots
\qquad
Project:
Hong \& Kao
-

Wind Load Criteria

Risk Category: II Basic Wind Speed: 97 mph Exposure Category: C

$\mathrm{K}_{\mathrm{zz}}:$	$\mathbf{1 . 0 0}$	Section 26.8
$\mathrm{K}_{\mathrm{e}}:$	$\mathbf{1 . 0 0}$	Section 26.10 .1

Table 1.5-1
Figure 26.5.1
Section 26.7.3

Section 26.10.1
$\mathrm{K}_{\mathrm{d}}: \quad \mathbf{0 . 8 5}$ Section 26.6
Roof Type: Flat
Roof Slope: $\mathbf{0 . 0 : 1 2}=0.0$ DEG
Mean Roof Height: 31.0 ft
Wall Height:
31.0 ft

Parapet Height: 1.0 ft

Zone Dimensions
Least Horiz. BLDG Dimension: $\quad 62 \mathrm{ft}$
a: 6.2 ft
2a: 12.4 ft

Wall Pressures

$\mathrm{K}_{\mathrm{z}}:$	0.850	Table 26.10-1	$0-15 \mathrm{ft}$ (PART 3)
$\mathrm{K}_{\mathrm{h}}:$	$0.989 \quad$ Table 26.10-1		
Effective Wind Area:	Zone 4:		
	Zone 5:		

	At Top of Wall			FT TO 15 FT (>60' bldg)
Load Case	4	5	4	5
1	21.8	21.8		

*Negative indicates pressure away from surface *Okay to interpolate between 15 ft and top of wall (>60' bldg)
*All Values Ultimate (multiply x0.6 for ASD)

Roof Pressures
$\mathrm{K}_{\mathrm{h}}: 0.989$ Table 26.10-1
Overhang?: No

Effective Wind Area: | Zone 1 |
| :--- |
| Zone 1 |

Zone (PSF)

Load Case	1	$1{ }^{1}$	Load Case	2	2 e	2 n	2 r	2^{\prime}
1	9.7	9.7	1	9.7	-	-	-	-
2	-38.0	-14.6	2	-50.2	-	-	-	-

Load Case	3	$3 e$	$3 r$	3^{\prime}
1	9.7	-	-	-
2	-68.4	-	-	-

*Negative indicates pressure away from surface
*All Values Ultimate (multiply x0.6 for ASD)

Parapet Pressures

	Zone 4	Zone 5
Windward:	72.0	90.2
Leeward:	$\mathbf{4 5 . 5}$	$\mathbf{5 1 . 0}$

Wind Loads - Components and Cladding (Cont.)

ASCE 7-16 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

ASCE FIG 30.3-2A
FLAT/GABLE ROOF $\boldsymbol{\theta}<=\mathbf{7}^{\circ}$

ASCE FIG 30.3-2E to I
HIP ROOF $7^{\circ}<\theta<=45^{\circ}$

ASCE FIG 30.3-5B
Monoslope ROOF $10^{\circ}<\theta<=30^{\circ}$

ASCE FIG 30.3-2B to D GABLE ROOF $7^{\circ}<\theta<=45^{\circ}$

ASCE FIG 30.3-5A
Monoslope ROOF $3^{\circ}<\theta<=10^{\circ}$

ASCE FIG 30.5-1
ROOF H > 60ft, $\boldsymbol{\theta}$ <= 7°

Project:	Hong \& Kao	Date:	6/7/23	Job No:	23127.01
		Designer:	MKS	Sheet:	5
Client:	Chesmore Buck	Checked By:			

Seismic Weight

At High Roof:
Roof = 2105 sf
Veneer $=795$ sf
Weight $=2105^{*} 24+795^{*} 38=80730 \mathrm{lb}$
At Low Roof/Second Floor:
Roof $=1528 \mathrm{sf}$
Roof w/ Gravel = 970 sf
Floor = 1978 sf
Deck $=77+376=453 \mathrm{sf}$
Veneer $=633+1247=1880 \mathrm{sf}$
Weight $=1528^{*} 24+970 * 35+1978^{*} 24$
$+453 * 28+1880 * 38=202218 \mathrm{lb}$

At Main Floor:
Floor $=3930$ sf
Deck $=510$ sf
Veneer $=1674$ sf
Weight $=3930 * 24+510 * 28$
$+1674 * 38=172212 \mathrm{lb}$
Base Shear $=(80.7+202.2+172.2)^{*} 0.149=67.8 \mathrm{~K}$

N-S Wind Tributary Area

At High Roof:

Grid $3=222 / 2+265 / 8=144$
Grid $4=265 / 4+265 / 8=99$
At Low Roof/Second Floor:
Grid $3=222+611 / 2+265 / 2+362 / 4=751$
Grid $4=265 / 2+362 / 4+66 / 2=256$

At Main Floor:

Grid $3=222+611+355 / 2+$
$265 / 2+362 / 4+91 / 2=1279$
Base Shear $=1600 * 20.4 / 1000=32.6 K$

E-W Wind Tributary Area

At High Roof:
Grid C $=578 / 4=145$
Grid $E=578 / 4=145$
At Low Roof/Second Floor:
Grid $A=141 / 4=35$
Grid $B=(286+141) / 4=107$
Grid $C=578 / 2+(286+362) / 4=451$
Grid $D=(142+362) / 4=126$
Grid $E=578 / 2+142 / 4=325$

At Main Floor:

Grid $A=141 / 2+161 / 4=111$
Grid $B=(286+141) / 2+(189+161) / 4=301$
Grid $C=578 / 2+(286+362) / 2+(372+189) / 4=754$
Grid $D=(142+362) / 2+(372+147) / 4=382$
Grid $E=578 / 2+142 / 2+147 / 4=397$
Base Shear $=1820 * 21.4 / 1000=38.9 \mathrm{~K}$

Structure: Hong \& Kao Residence - Main House

Seismic Loads:	
Dead Load at Roof:	24 psf
Roof Snow Load:	30 psf
Seismic Snow Load:	$\mathbf{0 . 0} \mathbf{~ p s f}$
Dead Load at Floor:	24 psf
Load at Deck:	22 psf
Veneer:	38 psf

Wind Loads:

Wall Load (E-W):	21.4 psf
Wall Load (N-S):	20.4 psf
Projected Roof Load:	8.0 psf

$$
\begin{aligned}
\mathrm{C}_{\mathrm{v}, \text { roof: }}: & 0.253 \\
\mathrm{C}_{\mathrm{v}, \text { upper: }}: & 0.166 \\
\mathrm{C}_{\mathrm{v}, \text { main: }}: & 0.079
\end{aligned}
$$

Basement Floor Shear Walls:

$\begin{aligned} & \text { SW Grid } \\ & (\mathrm{N}-\mathrm{S}) \\ & \hline \end{aligned}$	Seismic Tributary (sf)					Wind Tributary (sf)		
	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
Grid 3	4101	4367	886	1398	0	1279	0	0
					$\begin{gathered} 0 \\ 54354 \end{gathered}$			$\begin{gathered} 0 \\ 26092 \end{gathered}$
					0			0
					0			0
					0			0
(E-W)								
Grid A	369	334	0	114	2446	111	0	2375
Grid B	1007	915	255	225	12110	301	0	6441
					0			0
Grid C	1934	1593	631	332	22488	754	0	16136
Grid D	0	888	0	242	5064	382	0	8175
Grid E	1402	1114	0	305	14875	397	0	8496

Main Floor Shear Walls:

SW Grid (N-S)	Seismic Tributary (sf)					Wind Tributary (sf)		
	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
					0			0
					0			0
Grid 3	3995	1416	376	704	35713	751	0	15320
Grid 4	1211	562	78	300	11769	256	0	5222
					0			0
					0			0
(E-W)								
Grid A	369	0	0	74	1937	35	0	749
Grid B	1007	0	0	177	7231	107	0	2290
					0			0
Grid C	1934	990	265	305	18579	451	0	9651
Grid D	527	495	188	151	6811	126	0	2696
Grid E	770	495	0	254	8250	325	0	6955

Upper Floor Shear Walls:

$\begin{array}{c\|} \hline \text { SW Grid } \\ (\mathrm{N}-\mathrm{S}) \end{array}$	Seismic Tributary (sf)					Wind Tributary (sf)		
	Roof	Floor	Deck	Veneer	EQ (lb)	Wall	Roof	Wind (lb)
Grid 3	1332	0	0	329	11251	144	0	2938
					0			0
Grid 4	774	0	0	199	6613	99	0	2020
					0			0
					0			0
					0			0
(E-W)								
Grid C	1053	0	0	127	7615	145	0	3103
					0			0
Grid D	527	0	0	64	3815	72	0	1541
Grid E	527	0	0	64	3815	72	0	1541
					0			0
					0			0

PRELIMINARY NOT FOR CONSTRUCTION

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: High Roof (N-S)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) }= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID 3	18.75	-	-	-	-	-	-	-	-	-
SW Segment 3.7	18.75	8.75	0.47	HF \#2	0.43	Interstory	8.75	10.0	14.0	15.0
SW GRID 4	32.50	-	-	-	-	-	-	-	-	-
4.3	18.75	8.75	0.47	HF \#2	0.43	Interstory	8.75	48.0	4.0	15.0
4.4	13.75	8.75	0.64	HF \#2	0.43	Interstory	8.75	48.0	6.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

SW Mark	$\begin{gathered} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (lb)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \quad \text { End } 1 \end{gathered}$	$\begin{gathered} \text { Wall DL (lb) } \\ \text { End 2 } \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID 3	11250	4140	-	-	-	-	-	-
SW Segment 3.70	11250	4140	5578			SW-4	2	(2) CS16 (3410)
SW GRID 4	6620	2020	9000			SW-6	2	No Strap
4.40	2801	855	7013			SW-6	2	No Strap
SW GRID						-	-	-
SW GRID						-	-	-

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
			Designer:	MKS	Sheet:

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: High Roof (N-S)

Shear Wall Schedule		$\phi_{\mathrm{D}}=0.8$					
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, \mathbf{G}_{a} (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

sw Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Sear (plf) (pif)	$\underset{\text { (plf) }}{\text { Controlling Shear }}$ (plf)	$\begin{aligned} & \text { Shear Wall } \\ & \text { Type } \end{aligned}$	Shear Wall Capacity (plf)	Check	Controlling Shear
3.70	600	1.00	645	221	237	645	sw-4	736	ок	Seismic
4.30	204	1.00	219	62	67	219	SW-6	496	OK	Seismic
4.40	204	1.00	219	62	67	219	SW-6	496	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

Determine Shear Wall Overturning Moment Lever Arm					
sw Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input Mor Arm Lever
3.70	18.75	18.54	1.12%	No	
		18.75	18.54	1.12%	No
4.30	13.75	13.54	1.54%	No	
4.40					

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: High Roof (N-S)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (Ib)	End 2 Dead (b)
3.70	3675		3675	1159		1159	2789	2789
4.30	1248		1248	326		326	4500	4500
4.40	1248		1248	326		326	3506	3506

Determine Required Holdown (ASD)
SW Segment Mark Wind End 1 Eq. 16-15 EQ End 1 Eq. 16-16 Wind End 2 Eq. 16-15 EQ End 2 Eq. 16-16 Controlling Ten. Load (lb) Holdown Holdown Capacity (b) Status
3.70

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor (N-S)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) }= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\mathrm{wp}}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID 3	38.25	-	-	-	-	-	-	-	-	-
SW Segment										
3.5	16.75	9.50	0.57	HF\#2	0.43	Interstory	9.50	10.0	9.0	12.0
3.6	21.50	8.25	0.38	HF\#2	0.43	Interstory	8.25	10.0	8.0	12.0
SW GRID 4	13.50									
4.1	8.50	9.50	1.12	HF\#2	0.43	Base	9.50	48.0	2.0	15.0
4.2	5.00	8.25	1.65	HF\#2	0.43	Base	8.25	48.0	11.5	30.0
SW GRID	0.00	.	.	.	-	-	-	-	-	.
SW GRID	0.00	-	-	-	-	-	-	-	-	-

sw Mark	$\begin{gathered} \text { EQ (lb) Wall } \\ \text { (ULT) } \end{gathered}$	$\begin{gathered} \text { Wind (ID) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wall DL (lb)	$\begin{gathered} \hline \text { Wall DL (Ib) } \\ \quad \text { End 1 } \\ \hline \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Wall DL (Ib) } \\ \text { End 2 } \\ \hline \end{array}$	Shear Wall Type	$\begin{gathered} \text { MIN. \# of } \\ \text { End Studs } \end{gathered}$	Holdown
SW GRID	35720	15320	-		-	-	-	-
SW Segment								
3.50	15642	6709	3400			SW-2	2	MSTC66 (5855 max.)
3.60	20078	8611	3838			SW-2	2	MSTC66 (5850 max.)
SW GRID 4	11770	5230						
4.10	7411	3293	4131			SW-3	2	HDU8 (6765DF, 5820HF)
4.20	4359	1937	3705			sW-3	2	HDU8 (6765DF, 5820HF)
SW GRID						-	-	-
SW GRID						-	-	-

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor (N-S)

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
3.50	934	1.00	1004	401	431	1004	SW-2	1232	OK	Seismic
3.60	934	1.00	1004	401	431	1004	SW-2	1232	OK	Seismic
4.10	872	1.00	937	387	417	937	SW-3	960	OK	Seismic
4.20	872	1.00	937	387	417	937	SW-3	960	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input $\mathrm{M}_{\text {ot }}$ Lever Arm (ft)
	0.00	-0.21	100.00\%		
3.50	16.75	16.54	1.26\%	No	
3.60	21.50	21.29	0.98\%	No	
4.10	8.50	8.01	6.11\%	No	
4.20	5.00	4.51	10.85\%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor (N-S)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (Ib)
3.50	6210		6210	2283		2283	1700	1700
3.60	5393		5393	1983		1983	1919	1919
4.10	5798		5798	2208		2208	2066	2066
4.20	5035		5035	1918		1918	1853	1853

Determine Required Holdown (ASD)
SW Segment Mark Wind End 1 Eq. 16-15 EQ End 1 Eq. 16-16 Wind End 2 Eq. 16-15 EQ End 2 Eq. 16-16 Controlling Ten. Load (b) Holdown Holdown Capacity (lb) Status
3.50

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Main Floor (N-S)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) }= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}$ (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID 3	95.75	-	-	-	-	-	-	-	-	-
SW Segment 3.1	14.25	10.50	0.74	HF \#2	0.43	Base	10.50	10.0	4.0	12.0
3.2	39.75	7.50	0.19	HF \#2	0.43	Base	7.50	10.0	4.0	12.0
3.3	25.75	7.50	0.29	HF \#2	0.43	Base	7.50	10.0	4.0	12.0
3.4	16.00	10.50	0.66	HF \#2	0.43	Base	10.50	10.0	4.0	12.0
SW GRID	0.00	-	-	.	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
			Designer:	MKS	Sheet:

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Main Floor (N-S)

Shear Wall Schedule		$\phi_{\mathrm{D}}=0.8$					
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	$\begin{gathered} \text { Panel Edge } \\ \text { Nail } \\ \text { Spacing (in) } \end{gathered}$	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, $\mathbf{G a}_{\mathrm{a}}$ (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
3.10	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
3.20	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
3.30	568	1.00	610	273	293	610	SW-4	736	OK	Seismic
3.40	568	1.00	610	273	293	610	SW-4	736	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input $\mathrm{M}_{\text {ot }}$ Lever Arm (ft)
3.10	14.25	13.77	3.52\%	No	
3.20	39.75	39.27	1.23\%	No	
3.30	25.75	25.27	1.92\%	No	
3.40	16.00	15.52	3.12\%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: Main Floor (N-S)

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (lb)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (b)	End 2 Dead (Ib)
3.10	4173		4173	1717		1717	1090	1090
3.20	2981		2981	1227		1227	2445	2445
3.30	2981		2981	1227		1227	1584	1584
3.40	4173		4173	1717		1717	1224	1224

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
3.10	-1063	-3667	-1063	-3667	-3667	HDU5 (5645DF, 4340HF)	-4340	OK
3.20	240	-1846	240	-1846	-1846	HDU2 (3075DF, 2215HF)	-2215	OK
3.30	-276	-2245	-276	-2245	-2245	HDU5 (5645DF, 4340HF)	-4340	OK
3.40	-983	-3605	-983	-3605	-3605	HDU5 (5645DF, 4340HF)	-4340	OK

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: High Roof (E-W)

Sds $=$	0.97
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	17.25

SW Mark	$L_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\mathrm{wp}}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}$ (ft)	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID C	32.58	-	-	\cdot	-	-	-	-	-	-
SW Segment C. 6	21.33	8.75	0.41	HF \#2	0.43	Interstory	8.75	48.0	2.0	15.0
C. 7	11.25	8.75	0.78	HF \#2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID D	19.75	-	-	-	-	-	-	-	-	-
D. 4	19.75	8.75	0.44	HF \#2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID E	20.00							-		
E. 4	10.75	8.75	0.81	HF \#2	0.43	Interstory	8.75	48.0	2.0	15.0
E. 5	9.25	8.75	0.95	HF \#2	0.43	Interstory	8.75	48.0	2.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
			Designer:	MKS	Sheet:

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: High Roof (E-W)

Shear Wall Schedule		$\phi_{\mathrm{D}}=0.8$					
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, $\mathbf{G a}_{\mathrm{a}}$ (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
C. 6	234	1.00	251	190	204	251	SW-6	496	OK	Seismic
C. 7	234	1.00	251	190	204	251	SW-6	496	OK	Seismic
D. 4	193	1.00	208	78	84	208	SW-6	496	OK	Seismic
E. 4	191	1.00	205	77	83	205	SW-6	496	OK	Seismic
E. 5	191	1.00	205	77	83	205	SW-6	496	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input $\mathrm{M}_{\text {ot }}$ Lever Arm (ft)
C. 6	21.33	21.12	0.99\%	No	
C. 7	11.25	11.04	1.89\%	No	
D. 4	19.75	19.54	1.07\%	No	
E. 4	10.75	10.54	1.98\%	No	
E. 5	9.25	9.04	2.30\%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: High Roof (E-W)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
C. 6	1433		1433	997		997	4799	4799
C. 7	1433		1433	997		997	3531	3531
D. 4	1185		1185	409		409	4444	4444
E. 4	1170		1170	404		404	2619	2619
E. 5	1170		1170	404		404	2281	2281

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	$\begin{array}{\|l} \hline \text { Controlling } \\ \text { Ten. Load } \end{array}$ (lb)	Holdown	Holdown Capacity (lb)	Status
C. 6	1882	795	1882	795	795	No Strap	0	OK
C. 7	1121	207	1121	207	207	No Strap	0	OK
D. 4	2257	878	2257	878	878	No Strap	0	OK
E. 4	1167	46	1167	46	46	No Strap	0	OK
E. 5	965	-111	965	-111	-111	CS16 (1705)	-1705	OK

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor (E-W)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) }= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(f t)$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID A	30.75	-	-	-	-	-	-	-	-	-
SW Segment A. 2	30.75	8.00	0.26	HF \#2	0.43	Interstory	8.00	48.0	7.0	15.0
SW GRID B	19.25	-	-	-	-	-	-	-	-	-
B. 2	19.25	11.00	0.57	HF \#2	0.43	Interstory	11.00	10.0	6.0	15.0
SW GRID C	16.58	-	-	-	.	-	-	-	-	-
C. 4	7.25	11.00	1.52	HF \#2	0.43	Interstory	11.00	10.0	8.0	15.0
C. 5	9.33	9.50	1.02	HF \#2	0.43	Base	9.50	48.0	2.0	30.0
SW GRID D	20.75	-	-	-	-	-	-	-	-	-
D. 2	20.75	9.50	0.46	HF \#2	0.43	Interstory	9.50	48.0	2.0	15.0

SW Mark	$\begin{gathered} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (lb)	Wall DL (Ib) End 1	$\begin{gathered} \text { Wall DL (lb) } \\ \text { End 2 } \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID A	1940	750	-	-	-	-	-	-
SW Segment A. 2	1940	750	15037			SW-6	2	No Strap
SW GRID B	7240	2290				-	-	-
B. 2	7240	2290	3850			SW-6	2	(2) CS16 (3410)
SW GRID C	18580	9650				-	-	-
C. 4	8125	4220	1668			SW-2	2	CMST12 (9215)
C. 5	10455	5430	4814	200	200	SW-2	3	HDU8 (3) Studs (7870DF, 6580HF)
SW GRID D	6820	2700				-	-	-
D. 2	6820	2700	10085			SW-6	2	No Strap

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	
	1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor (E-W)

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
A. 2	63	1.00	68	24	26	68	SW-6	496	OK	Seismic
B. 2	376	1.00	404	119	128	404	SW-6	496	OK	Seismic
C. 4	1121	1.00	1205	582	626	1205	SW-2	1232	OK	Seismic
C. 5	1121	1.00	1205	582	626	1205	SW-2	1232	OK	Seismic
D. 2	329	1.00	353	130	140	353	SW-6	496	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input $\mathrm{M}_{\text {от }}$ Lever Arm (ft)
A. 2	30.75	30.54	0.68\%	No	
B. 2	19.25	19.04	1.09\%	No	
B. 2	19.25	19.04	1.09\%	No	
C. 4	7.25	7.04	2.96\%	No	
C. 5	9.33	8.72	7.05\%	No	
D. 2	20.75	20.54	1.01\%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor (E-W)

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (lb)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
A. 2	353		353	117		117	7518	7518
B. 2	2896		2896	785		785	1925	1925
C. 4	8629		8629	3841		3841	834	834
C. 5	7452		7452	3318		3318	2607	2607
D. 2	2186		2186	742		742	5042	5042

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	\qquad	Holdown	Holdown Capacity (b)	Status
A. 2	4394	3137	4394	3137	3137	No Strap	0	OK
B. 2	370	-2002	370	-2002	-2002	(2) CS16 (3410)	-3410	OK
C. 4	-3341	-8242	-3341	-8242	-8242	CMST12 (9215)	-9215	OK
C. 5	-1753	-6242	-1753	-6242	-6242	HDU8 (3) Studs (7870DF, 6580HF	-6580	OK
D. 2	2284	155	2284	155	155	No Strap	0	OK

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor Continued (E-W)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory }(\text { in })= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID E	24.00	-	-	-	-	-	-	-	-	-
SW Segment E. 3	24.00	8.25	0.34	HF \#2	0.43	Interstory	8.25	48.0	2.0	12.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

SW Mark	$\begin{gathered} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (lb)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \quad \text { End 1 } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End 2 } \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID E	8250	7000	-	-	-	-	-	-
SW Segment E. 3	8250	7000	10080			SW-6	2	No Strap
SW GRID						-	-	-
SW GRID						-	-	-
SW GRID						-	-	-

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: Low Roof / Upper Floor Continued (E-W)

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E. 3	344	1.00	370	292	314	370	SW-6	496	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN

Determine Shear Wall Overturning Moment Lever Arm					
sw Segment Mark	Wall Lengt Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input Mor Arm (ever
	24.00	23.79	0.88%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Low Roof / Upper Floor Continued (E-W)
Shear Wall End Axial Load (ASD)

sw Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (lb)	Seismic Tension (lb)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
	1985		1985	1444		1444	5040	5040

Determine Required Holdown (ASD)

sw Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (bi)	Status
	1580	354	1580	354	354	No Strap		0

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Main Floor (E-W)
$\begin{array}{rc}\text { Sds }= & 0.97 \\ \text { Depth of Floor Framing \& Plates (Clearspan) at Interstory }(\text { in })= & 17.25\end{array}$
Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(f t)$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID A	17.00	-	-	-	-	-	-	-	-	-
SW Segment A. 1	17.00	10.00	0.59	HF \#2	0.43	Base	10.00	48.0	7.0	12.0
SW GRID B	15.75	-	-	-	-	-	-	-	-	-
B. 1	15.75	10.50	0.67	HF \#2	0.43	Base	10.25	48.0	15.0	12.0
SW GRID C	27.00	-	-	-	.	-	-	-	-	-
C. 1	11.00	10.25	0.93	HF \#2	0.43	Base	10.25	48.0	15.0	12.0
C. 2	9.00	10.25	1.14	HF \#2	0.43	Base	10.25	10.0	15.0	12.0
C. 3	7.00	10.25	1.46	HF \#2	0.43	Base	10.25	10.0	15.0	12.0
SW GRID D	17.00	-	-	-	-	-	-	-	-	-
D. 1	17.00	10.25	0.60	HF \#2	0.43	Base	10.25	48.0	8.0	12.0

SW Mark	$\begin{gathered} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (lb)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \quad \text { End 1 } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End 2 } \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID A	2450	2380	-	-	-	-	-	-
SW Segment A. 1	2450	2380	9588			SW-6	2	No HD
SW GRID B	12110	6440	10584			SW-3	2	HDU5 (5645DF, 4340HF)
SW GRID C	22490	16140				-	-	-
C. 1	9163	6576	7392			SW-3	2	HDU5 (5645DF, 4340HF)
C. 2	7497	5380	2543			SW-3	2	HDU8 (6765DF, 5820HF)
C. 3	5831	4184	1978			SW-3	2	HDU8 (6765DF, 5820HF)
SW GRID D	5070	8180				-	-	-
D. 1	5070	8180	9996			SW-6	2	No HD

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
			Designer:	MKS	Sheet:

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Main Floor (E-W)

Shear Wall Schedule		$\phi_{\mathrm{D}}=0.8$					
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, $\mathbf{G a}_{\mathrm{a}}$ (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	620	496	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	920	736	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1200	960	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	1540	1232	2155	1724	23
2SW-4	APA Rated, 7/16", 8d Common	4	1520	1216	2130	1704	26
2SW-3	APA Rated, 7/16", 8d Common	3	1960	1568	2740	2192	30
2SW-2	APA Rated, 7/16", 8d Common	2	2560	2048	3580	2864	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
A. 1	144	1.00	155	140	151	155	SW-6	496	OK	Seismic
B. 1	769	1.00	827	409	440	827	SW-3	960	OK	Seismic
C. 1	833	1.00	896	598	643	896	SW-3	960	OK	Seismic
C. 2	833	1.00	896	598	643	896	SW-3	960	OK	Seismic
C. 3	833	1.00	896	598	643	896	SW-3	960	OK	Seismic
D. 1	298	1.00	321	481	517	517	SW-6	696	OK	Wind

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input $\mathrm{M}_{\text {ot }}$ Lever Arm (ft)
A. 1	17.00	16.63	2.26\%	No	
B. 1	15.75	15.27	3.17\%	No	
	11.00	10.52	4.61\%		
C. 1	$\frac{11.00}{9.00}$	$\frac{10.52}{8.51}$	5.615\%	No	
C. 3	7.00	6.51	7.52\%	No	
D. 1	17.00	16.63	2.26\%	No	

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence
Floor Level: Main Floor (E-W)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (lb)	Seismic Tension Total (lb)	Wind Tension (lb)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (lb)
A. 1	1009		1009	840		840	4794	4794
B. 1	5517		5517	2515		2515	5292	5292
C. 1	5977		5977	3676		3676	3696	3696
C. 2	5977		5977	3676		3676	1271	1271
C. 3	5977		5977	3676		3676	989	989
D. 1	2140		2140	2959	-2284	676	4998	4998

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (b)	Holdown	Holdown Capacity (lb)	Status
A. 1	2036	1217	2036	1217	1217	No HD	0	OK
B. 1	661	-3060	661	-3060	-3060	HDU5 (5645DF, 4340HF)	-4340	OK
C. 1	-1459	-4261	-1459	-4261	-4261	HDU5 (5645DF, 4340HF)	-4340	OK
C. 2	-2914	-5386	-2914	-5386	-5386	HDU8 (6765DF, 5820HF)	-5820	OK
C. 3	-3083	-5518	-3083	-5518	-5518	HDU8 (6765DF, 5820HF)	-5820	OK
D. 1	2323	180	2323	180	180	No HD	0	OK

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018

Structure: Koa and Hong Residence Floor Level: Main Floor Continued (E-W)

\(\begin{array}{rc}Sds= \& 0.97
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in)= \& 17.25\end{array}\)

Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\text {wp }}(\mathrm{ft})$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	$\begin{aligned} & \text { Wall Wt. } \\ & \text { (pst) } \end{aligned}$	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID E	20.50	-	-	-	-	-	-	-	-	-
SW Segment E. 1	6.50	10.50	1.62	HF\#2	0.43	Base	10.50	48.0	2.0	12.0
E. 2	14.00	10.50	0.75	HF\#2	0.43	Base	10.50	48.0	6.0	12.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00									
SW GRID	0.00	-	-		.	.	-	.	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: Main Floor Continued (E-W)

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E. 1	726	1.00	780	415	446	780	SW-3	960	OK	Seismic
E. 2	726	1.00	780	415	446	780	SW-3	960	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm
*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

Determine Shear Wall Overturning Moment Lever Arm					
sw Segment Mark	Wall Lengt Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input Mor Arm Lever
E.1	6.50	6.01	8.15%	No	
	14.00	13.52	3.58%	No	
E.2					

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2018, ASCE 7-16, SDPWS 2015 \& NDS 2018
Structure: Koa and Hong Residence Floor Level: Main Floor Continued (E-W)

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (Ib)
E. 1	5335		5335	2612		2612	1716	1716
E. 2	5335		5335	2612		2612	4032	4032

Determine Required Holdown (ASD)
SW Segment Mark Wind End 1 Eq. 16-15 EQ End 1 Eq. 16-16 Wind End 2 Eq. 16-15 EQ End 2 Eq. 16-16 Controlling Ten. Load (b) Holdown Holdown Capacity (lb) Status
E.1
E.2

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	3
Seattle, WA 98101	Client: Chesmore Buck	Checked By:	SHT		

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040
Quantum Job Number: 23127.01

FOUNDATION DESIGN - MAIN HOUSE

Spread Footing Schedule Design

Per IBC 2018 \& ACI 318-14

Typical Properties:
Allowable Soil Bearing Pressure: 2 ksf
Ultimate Factor, F (1.25<F<1.6):
Minimum Thickness: 10 inches

$\mathrm{f}^{\prime} \mathrm{c}:$	2.5	ksi
$\mathrm{f}_{\mathrm{y}}:$	40	ksi

Design:

Footing	Column Size		Allowable Soil Load kips	$\begin{gathered} \mathrm{Pu} \\ \mathrm{kips} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Min. } \\ \mathrm{d} \\ \text { in } \end{gathered}$	Minimum Ftg Th. in	Ftg. Th. Input in	$\begin{gathered} \mathrm{As} \text { (ult) } \\ \text { in^2 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { As (min) } \\ \text { in^2 } \\ \hline \end{array}$	Rebar Size	Rebar Quantity	$\begin{gathered} \text { Rebar } \\ \text { Spacing } \\ \text { in } \end{gathered}$
	B	H										
	in	in										
F-2	6	6	8.0	11	6	10	10	0.09	0.43	\#4	3	10.8
F-2.5	6	6	12.5	18	6	10	10	0.20	0.54	\#4	3	13.8
F-3	6	6	18.0	25	6	10	12	0.28	0.78	\#4	4	11.2
F-3.5	6	6	24.5	34	6	10	12	0.47	0.91	\#4	5	9.9
F-4	6	6	32.0	45	6	10	12	0.73	1.04	\#4	6	9.1
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A
F-			0.0	0	\#DIV/0!	\#DIV/0!		\#DIV/0!	0.00		\#DIV/0!	\#N/A

Quantum Consulting Engineers LLC	Project: Hong Kao Residence	Date:	6/7/23	Job No:	23127.01
1511 Third Avenue, Suite 323		Designer:	MKS	Sheet:	1
Seattle, WA 98101	Client: Chesmore Buck	Checked By:			

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Spread Footing at Deck Stair Column
Code References
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	2.0 ksf
fy: Rebar Yield	40.0 ksi	Soil Density	110.0 pcf
Ec: Concrete Elastic Modulus	$3,122.0 \mathrm{ksi}$	Increase Bearing By Footing Weight	Yes
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	350.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.350
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	1.50 ft
Min Steel \% Bending Reinf.	000180	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	wh	ksf
Add Pedestal Wt for Soil Pressure	No	when max. length or widh is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

Applied Loads

		D	Lr	L	S	W	E	H
P: Column Load OB: Overburden	=	2.10		2.80	0.0		0.0	$\begin{aligned} & \hline \mathrm{k} \\ & \mathrm{ksf} \end{aligned}$
$\begin{aligned} & M-x x \\ & M-z z \end{aligned}$	$=$ $=$			2.560				$\begin{aligned} & k-f t \\ & k-f t \end{aligned}$
$\begin{aligned} & V-x \\ & V-z \end{aligned}$	=	0.0			0.0		0.0	$\begin{aligned} & \mathrm{k} \\ & \mathrm{k} \end{aligned}$

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: Hong Kao.ec6
LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Spread Footing at Deck Stair Column
DESIGN SUMMARY
Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.6098	Soil Bearing	1.308 ksf	2.145 ksf	+D+L about $\mathrm{Z}-\mathrm{Z}$ axis
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	$0.0 \mathrm{k}-\mathrm{ft}$	$0.0 \mathrm{k}-\mathrm{ft}$	No Overturning
PASS	3.926	Overturning - $\mathrm{Z}-\mathrm{Z}$	$2.560 \mathrm{k}-\mathrm{ft}$	10.050 k -ft	+D+L
PASS	n/a	Sliding - $\mathrm{X}-\mathrm{X}$	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2215	Z Flexure (+X)	$1.558 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60L
PASS	0.05226	Z Flexure (-X)	0.3675 k-ft/ft	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.40D
PASS	0.1244	X Flexure (+Z)	$0.8750 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60L
PASS	0.1244	X Flexure (-Z)	$0.8750 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60L
PASS	0.1352	1-way Shear (+X)	10.142 psi	75.0 psi	+1.20D+1.60L
PASS	0.03025	1-way Shear (-X)	2.269 psi	75.0 psi	+1.40D
PASS	0.07202	1-way Shear (+Z)	5.401 psi	75.0 psi	+1.20D+1.60L
PASS	0.07202	1-way Shear (-Z)	5.401 psi	75.0 psi	+1.20D+1.60L
PASS	0.1350	2-way Punching	20.255 psi	150.0 psi	+1.20D+1.60L
tailed Results					

Detailed Results
Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xecc	Zecc	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
			(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	
X-X, D Only	2.145	n/a	0.0	0.4333	0.4333	n/a	n/a	0.202
X-X, +D+L	2.145	n/a	0.0	0.7444	0.7444	n/a	n/a	0.347
X-X, +D+0.750L	2.145	n/a	0.0	0.6667	0.6667	n/a	n/a	0.311
X-X, +0.60D	2.145	n/a	0.0	0.260	0.260	n/a	n/a	0.121
Z-Z, D Only	2.145	0.0	n/a	n/a	n/a	0.4333	0.4333	0.202
Z-Z, +D+L	2.145	4.585	n/a	n / a	n/a	0.1812	1.308	0.610
Z-Z, +D+0.750L	2.145	3.840	n/a	n/a	n/a	0.2443	1.089	0.508
Z-Z, +0.60D	2.145	0.0	n/a	n/a	n/a	0.260	0.260	0.121

Overturning Stability

Rotation Axis \& Load Combination...	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+L	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.750L	None	0.0 k-ft	Infinity	OK
X-X, +0.60D	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z, D Only	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z, +D+L	$2.560 \mathrm{k}-\mathrm{ft}$	$10.050 \mathrm{k}-\mathrm{ft}$	3.926	OK
Z-Z, +D+0.750L	$1.920 \mathrm{k}-\mathrm{ft}$	$9.0 \mathrm{k}-\mathrm{ft}$	4.688	OK
Z-Z, +0.60D	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Sliding Stability			All units k	

Force Application Axis Load Combination...	Sliding Force	Resisting Force	Stability Ratio	Status

Footing Has NO Sliding
Footing Flexure

Flexure Axis \& Load Combination	$\begin{gathered} \mathrm{Mu} \\ \mathrm{k}-\mathrm{ft} \end{gathered}$	Side	Tension Surface	As Req'd in^2	$\begin{gathered} \text { Gvrn. As } \\ \text { in }^{\wedge} 2 \end{gathered}$	Actual As in^2	$\begin{gathered} \text { Phi*Mn } \\ \text { k-ft } \end{gathered}$	Status
X-X, +1.40D	0.3675	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.40D	0.3675	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D +1.60 L	0.8750	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+1.60L	0.8750	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	0.6650	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D+L	0.6650	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +1.20D	0.3150	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
$\mathrm{X}-\mathrm{X},+1.20 \mathrm{D}$	0.3150	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.2363	+Z	Bottom	0.2592	AsMin	0.2667	7.033	OK
X-X, +0.90D	0.2363	-Z	Bottom	0.2592	AsMin	0.2667	7.033	OK

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: Hong Kao.ec6
LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202乏

DESCRIPTION: Spread Footing at Deck Stair Column

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202ः

DESCRIPTION: Spread Footing at Cantilevered Column
Code References
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : ASCE 7-16

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	2.0 ksf
fy : Rebar Yield	40.0 ksi	Soil Density	110.0 pcf
Ec: Concrete Elastic Modulus	3,122.0 ksi	Increase Bearing By Footing Weight	Yes
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	350.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.350
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	1.50 ft
Min Steel \% Bending Reinf.	$=0.00180$	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	when max. length or width is greater than	ksf
Add Pedestal Wt for Soil Pressure	No	when max. length or width is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

Project Title:
Engineer:
Project ID:
Project Descr:
General Footing

DESCRIPTION: Spread Footing at Cantilevered Column

Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.6410	Soil Bearing	1.375 ksf	2.145 ksf	+D+0.750L+0.750S+0.5250E about Z
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	$0.0 \mathrm{k}-\mathrm{ft}$	0.0 k-ft	No Overturning
PASS	2.795	Overturning - $Z-Z$	3.140 k -ft	8.775 k -ft	+0.60D+0.70E
PASS	1.098	Sliding - X-X	3.140 k	3.448 k	+0.60D+0.70E
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2192	Z Flexure (+X)	$1.729 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.888 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+L+0.20S+E
PASS	0.1723	Z Flexure (-X)	$1.359 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.888 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.20D+1.60L+0.50S
PASS	0.3379	X Flexure (+Z)	2.377 k-ft/ft	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}$
PASS	0.3379	X Flexure (-Z)	2.377 k-ft/ft	$7.033 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}$
PASS	0.1480	1-way Shear (+X)	11.10 psi	75.0 psi	+1.20D+L+0.20S+E
PASS	0.1121	1-way Shear (-X)	8.409 psi	75.0 psi	$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}$
PASS	0.1819	1-way Shear (+Z)	13.644 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.1819	1-way Shear (-Z)	13.644 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2802	2-way Punching	42.032 psi	150.0 psi	+1.20D+1.60L+0.50S

Detailed Results

Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xecc	$\text { (in) }^{\text {Zecc }}$	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
				Bottom, -Z	Top, +Z	Left, -X	Right, +X	
X-X, D Only	2.145	n / a	0.0	0.7250	0.7250	n/a	n/a	0.338
X-X, +D+L	2.145	n/a	0.0	1.058	1.058	n/a	n/a	0.493
X-X, +D+S	2.145	n/a	0.0	0.7750	0.7750	n/a	n/a	0.361
X-X, +D+0.750L	2.145	n/a	0.0	0.9750	0.9750	n/a	n/a	0.455
X-X, +D+0.750L+0.750S	2.145	n/a	0.0	1.013	1.013	n/a	n/a	0.472
X-X, +0.60D	2.145	n/a	0.0	0.4350	0.4350	n/a	n/a	0.203
X-X, +D+0.70E	2.145	n/a	0.0	0.7775	0.7775	n/a	n/a	0.363
X-X, +D+0.750L+0.750S+0.5250E	E 2.145	n/a	0.0	1.052	1.052	n/a	n/a	0.490
X-X, +0.60D+0.70E	2.145	n/a	0.0	0.4875	0.4875	n/a	n/a	0.227
Z-Z, D Only	2.145	0.1379	n/a	n/a	n/a	0.7085	0.7415	0.346
Z-Z, +D+L	2.145	0.09449	n/a	n / a	n/a	1.042	1.075	0.501
Z-Z, +D+S	2.145	-0.6452	n/a	n / a	n/a	0.8575	0.6925	0.400
Z-Z, +D+0.750L	2.145	0.1026	n/a	n / a	n/a	0.9585	0.9915	0.462
Z-Z, +D+0.750L+0.750S	2.145	-0.3457	n/a	n/a	n/a	1.070	0.9548	0.499
Z-Z, +0.60D	2.145	0.1379	n/a	n/a	n/a	0.4251	0.4449	0.207
Z-Z, +D+0.70E	2.145	4.090	n/a	n/a	n/a	0.2528	1.302	0.607
Z-Z, +D+0.750L+0.750S+0.5250E	- 2.145	1.863	n/a	n/a	n/a	0.7285	1.375	0.641
Z-Z, +0.60D+0.70E	2.145	6.441	n/a	n/a	n/a	0.0	1.007	0.470

Overturning Stability

Rotation Axis \& Load Combination...	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k -ft	Infinity	OK
X-X, +D+L	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+S	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.750L	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.750L+0.750S	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +0.60D	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.70E	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +D+0.750L+0.750S+0.5250E	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
X-X, +0.60D+0.70E	None	$0.0 \mathrm{k}-\mathrm{ft}$	Infinity	OK
Z-Z, D Only	$0.10 \mathrm{k}-\mathrm{ft}$	13.050 k -ft	130.50	OK
Z-Z, +D+L	0.10 k -ft	19.050 k -ft	190.50	OK
Z-Z, +D+S	0.60 k -ft	14.050 k-ft	23.417	OK
Z-Z, +D+0.750L	0.10 k -ft	$17.550 \mathrm{k}-\mathrm{ft}$	175.50	OK
Z-Z, +D+0.750L+0.750S	0.450 k -ft	18.325 k -ft	40.722	OK
Z-Z, +0.60D	$0.060 \mathrm{k}-\mathrm{ft}$	7.830 k -ft	130.50	OK
Z-Z, +D+0.70E	3.180 k -ft	13.995 k-ft	4.401	OK
Z-Z, +D+0.750L+0.750S+0.5250E	2.410 k -ft	19.384 k -ft	8.043	OK
Z-Z, +0.60D+0.70E	3.140 k -ft	8.775 k-ft	2.795	OK

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

DESCRIPTION: Spread Footing at Cantilevered Column

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: Hong Kao.ec6

LIC\# : KW-06016450, Build:20.23.05.25
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202E

DESCRIPTION: Spread Footing at Cantilevered Column

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

GRAVITY DESIGN - DADU

Kao and Hong DADU
project
$\overline{\text { dat }}$
23127.01
job no.

1511 THIRD AVENUE
SUITE 323
SEATTLE, WA 98101
TEL 206.957.3900 FAX 206.957.3901

Roof, Roof: Joist \#1a
1 piece(s) 11 7/8" TJ I ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	436 @ $21 / 2^{\prime \prime}$	1581 (3.50")	Passed (28\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	408 @ 3 1/2"	1794	Passed (23\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	901 @ 4' 6 1/2"	3634	Passed (25\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 4' $61 / 2^{\prime \prime}$	0.289	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.062 @ 4' 6 1/2"	0.433	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	164	273	436	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	164	273	436	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 1 " 0 / c$	
Bottom Edge (Lu)	$9^{\prime} 1 " 0 / c$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $9^{\prime} 1^{\prime \prime}$	$24 \prime$	18.0	30.0	+5 PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) $957-3900$	
jshin@quantumce.com	

Roof, Roof: Joist \#1b
1 piece(s) 11 7/8" $\mathbf{T J}$ I® $110 @ 24$ OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	604 @ 2 1/2"	1581 (3.50")	Passed (38\%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	576 @ $31 / 2^{\prime \prime}$	1794	Passed (32\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1776 @ 6' $31 / 2^{\prime \prime}$	3634	Passed (49\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.131 @ 6' 3 1/2"	0.406	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.209 @ 6' 3 1/2"	0.608	Passed (L/698)	--	1.0 D + 1.0 S (All Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	227	378	604	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	227	378	604	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 7^{\prime \prime} 0 / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$	$24^{\prime \prime}$	18.0	30.0	+5 PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) $957-3900$	
jshin@quantumce.com	

Roof, Roof: Joist \#2
1 piece(s) 11 7/8" TJI® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$820 @ 21 / 2^{\prime \prime}$	$1581(3.50 ")$	Passed (52\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$792 @ 31 / 2^{\prime \prime}$	1794	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$3333 @ 8^{\prime} 61 / 2^{\prime \prime}$	3634	Passed (92\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.428 @ 88^{\prime} 61 / 2^{\prime \prime}$	0.556	Passed (L/468)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.684 @ 88^{\prime} 61 / 2^{\prime \prime}$	0.833	Passed (L/292)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type: Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	308	513	820	Blocking
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	308	513	820	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 1 " \mathrm{l} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $17^{\prime} 1^{\prime \prime}$	$24 \prime$	18.0	30.0	+5 PSF b/c Slope >5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

MEMBER REPORT
Roof, Roof: Header \#3

2 piece(s) 2×8 HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$756 @ 0$	$1823(1.50 ")$	Passed (41\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$593 @ 83 / 4^{\prime \prime}$	2501	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1276 @ 3^{\prime} 41 / 2^{\prime \prime}$	2569	Passed (50\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.051 @ $3^{\prime} 41 / 2^{\prime \prime}$	0.225	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.084 @ 33^{\prime} 41 / 2^{\prime \prime}$	0.313	Passed (L/959)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type: Header
Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (5/16"),
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	295	461	756	None
2- Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	295	461	756	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 9 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	5.5	--	
1 - Uniform (PLF)	0 to 6' 9"	N/A	82.0	136.5	Linked from: Roof: Joist \#1a, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) $957-3900$	
jshin@quantumce.com	

MEMBER REPORT
Roof, Roof: Header \#4
2 piece(s) 2×8 HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$420 @ 0$	$1823\left(1.500^{\prime \prime}\right)$	Passed (23\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$257 @ 83 / 4^{\prime \prime}$	2501	Passed (10\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$394 @ 1^{\prime} 101 / 2^{\prime \prime}$	2569	Passed (15\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.005 @ 1^{\prime} 101 / 2^{\prime \prime}$	0.125	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.008 @ 1^{\prime} 101 / 2^{\prime \prime}$	0.188	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header
Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Snow	Factored	Accessories	
1 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	164	256	420	None
2 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50 "$	164	256	420	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 9 \mathrm{~g} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 9 \mathrm{o} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to 3' 9"	N/A	5.5	--	
1 - Uniform (PLF)	0 to 3' 9"	N/A	82.0	136.5	Linked from: Roof: Joist \#1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) $957-3900$	
jshin@quantumce.com	

MEMBER REPORT
Roof, Roof: Header \#5

1 piece(s) 4×8 HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$299 @ 0$	$2126(1.50 ")$	Passed (14\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$257 @ 83 / 4^{\prime \prime}$	2538	Passed (10\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$767 @ 5^{\prime} 11 / 2^{\prime \prime}$	2823	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.069 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.342	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.100 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.313	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Wall
Member Type: Header
Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (5/16").
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1- Trimmer - HF	1.50"	1.50"	1.50"	94	205	299	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	94	205	299	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 3 \prime \prime / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 3$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $10^{\prime} 3^{\prime \prime}$	N / A	6.4	--	
1 - Uniform (PSF)	0 to $10^{\prime} 3^{\prime \prime}$	1^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

MEMBER REPORT
Roof, Roof Beam \#6
1 piece(s) 3 1/ 2" x 11 7/ 8" 1.55E TimberStrand ${ }^{\circledR}$ LSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$223 @ 2 "$	$3189\left(2.255^{\prime \prime}\right)$	Passed (7\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$147 @ 11^{\prime} 33 / 8^{\prime \prime}$	8590	Passed (2\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$370 @ 3^{\prime} 61 / 2^{\prime \prime}$	15953	Passed (2\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.003 @ 3^{\prime} 61 / 2^{\prime \prime}$	0.169	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.005 @ 3^{\prime} 61 / 2^{\prime \prime}$	0.338	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC 2021
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Stud wall - HF	3.50"	2.25"	1.50 "	87	142	229	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50 "	87	142	229	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $6^{\prime} 113 / 4^{\prime \prime}$	N/A	13.0	--	
1 - Uniform (PSF)	0 to $7^{\prime} 1^{\prime \prime}$ (Front)	1^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

Kao and Hong DADU
project

Upper Floor, Floor: Joist \#1
1 piece(s) 9 1/2" TJI® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$452 @ 21 / 2^{\prime \prime}$	$1460\left(3.500^{\prime \prime}\right)$	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$431 @ 31 / 2^{\prime \prime}$	1330	Passed (32\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1302 @ 6^{\prime} 2^{\prime \prime}$	3000	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.125 @ 6^{\prime} 2^{\prime \prime}$	0.298	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.172 @ 6^{\prime} 2^{\prime \prime}$	0.596	Passed (L/831)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
TJ-Pro ${ }^{\text {TM }}$ Rating	55	45	Passed	--	--

System : Floor
Member Type: Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240)
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: $1 / 2^{\text {" }}$ Gypsum ceiling.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	123	329	452	
2 - Stud wall - HF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	123	329	452	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 8 " 0 / c$	
Bottom Edge (Lu)	$12^{\prime \prime} 4{ }^{\prime \prime} 0 / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1- Uniform (PSF)	0 to $12^{\prime} 4^{\prime \prime}$	$16^{\prime \prime}$	15.0	40.0	Residential Loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

Upper Floor, Floor: Drop Beam \#2
1 piece(s) 5 1/ 8" x 24" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$11095 @ 4 "$	18322 (5.50")	Passed (61\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$8861 @ 2{ }^{\prime} 51 / 2^{\prime \prime}$	24990	Passed (35\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$64080 @ 12^{\prime} 21 / 2^{\prime \prime}$	83549	Passed (77\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.350 @ 12^{\prime} 21 / 2^{\prime \prime}$	0.594	Passed (L/815)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.612 @ 12^{\prime} 21 / 2^{\prime \prime}$	1.188	Passed (L/466)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- A 26.2% decrease in the moment capacity has been added to account for lateral stability.
- Critical positive moment adjusted by a volume factor of 0.92 that was calculated using length $\mathrm{L}=23^{\prime} 9{ }^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Column - HF	5.50"	5.50"	3.33 "	4757	3012	5439	11095	None
2 - Column - HF	5.50"	5.50"	3.24"	4637	2930	5290	10802	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to 24' 5"	N/A	29.9	--	--	
1-Uniform (PLF)	0 to 24' 1" (Top)	N/A	113.5	-	189.0	Linked from: Roof: Joist \#1b, Support 1
2- Uniform (PLF)	0 to 24' 1" (Top)	N/A	154.0	-	256.5	Linked from: Roof: Joist \#2, Support 1
3-Uniform (PLF)	0 to 24' 1" (Top)	N / A	92.3	246.8	-	Linked from: Floor: Joist \#1, Support 1

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

$\mathbf{2}$ piece(s) $\mathbf{2 \times 8} \mathbf{~ H F}$ No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$962 @ 0$	$1823(1.50 ")$	Passed (53\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$530 @ 83 / 4^{\prime \prime}$	2175	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$782 @ 1^{\prime} 71 / 2^{\prime \prime}$	2234	Passed (35\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.009 @ 171 / 2^{\prime \prime}$	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.012 @ 1^{\prime} 71 / 2^{\prime \prime}$	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Wall
Member Type: Header
Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1- Trimmer - HF	1.50"	1.50"	1.50"	269	693	962	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	269	693	962	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 3$ " $0 / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 3 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 3' ${ }^{\prime \prime}$	N/A	5.5	--	
1 - Uniform (PSF)	0 to 3' 3"	$4^{\prime} 6$	15.0	40.0	Residential Loading
2 - Uniform (PLF)	0 to 3' ${ }^{\prime \prime}$	N/A	92.3	246.8	Linked from: Floor: J oist \#1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

Upper Floor, Floor: Header \#4

$\mathbf{2}$ piece(s) $\mathbf{2} \times 8$ HF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$854 @ 0$	$1823(1.50 ")$	Passed (47\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$669 @ 83 / 4^{\prime \prime}$	2175	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1441 @ 3^{\prime \prime} 41 / 2^{\prime \prime}$	2234	Passed (65\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.068 @ 33^{\prime} 41 / 2^{\prime \prime}$	0.225	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.095 @ 3 ' 41 / 2^{\prime \prime}$	0.313	Passed (L/849)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$

System : Wall
Member Type: Header
Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (5/16"),
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Trimmer - HF	$1.50 "$	$1.50^{\prime \prime}$	$1.50 "$	246	608	854	None
2 - Trimmer - HF	$1.50 "$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	246	608	854	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 9 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 9 "$	N/A	5.5	--	
1 - Uniform (PSF)	0 to $6^{\prime} 9 "$	$4^{\prime \prime} 6 "$	15.0	40.0	Residential Loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Joshua Shin	
Quantum	
(206) 957-3900	
jshin@quantumce.com	

Structure: Garage Double Height Wall
Wall Line: Exterior Bearing Wall

Wall Configuration

Wall Height (ft):	21.00	Stud Spacing (in):	16
Stud Size:	2×8	Stud Species \& Grade:	HF \#2
Bot. Plate Th.:	$2 x$	Bot. Plate Species \& Grade:	HF \#2

Wall Finish Type: Brittle Defl. Criteria: L/240 =1.05 in per IBC 1604.3.1

Bending Stress and Stiffness Increase per NDS 3.1.1.1 ?: Yes
Wall Loading

Axial Load	Out of Plane Pressure Load			
DL (plf):	160	Wind (psf):	20	Strength
LL (plf):	0	EQ (psf):	5	Strength
SL (plf):	240	Sds:	1	

Wall Axial Load Eccentricity
n (in): $\quad 2.75$
e (in): $\quad 0.88$

Stud Properties

b (in):	1.50	E (psi):	1300000	per NDS Table 4A	$\mathrm{F}_{\mathrm{b}}(\mathrm{psi})$:	850	per NDS Table 4A
d (in):	7.25	E^{\prime} (psi):	1300000	$\begin{aligned} & =\mathrm{E}^{*} \mathrm{C}_{M}{ }^{*} \mathrm{C}_{\mathrm{t}} \\ & \text { per NDS Table 4A } \\ & =\mathrm{E}_{\text {min }}{ }^{*} \mathrm{C}_{\mathrm{M}}{ }^{*} \mathrm{C}_{\mathrm{t}} \end{aligned}$	$\mathrm{F}_{\mathrm{c}}(\mathrm{psi})$:	1300	per NDS Table 4A
A (in ${ }^{2}$):	10.88	$\mathrm{E}_{\text {min }}(\mathrm{psi})$:	470000				
$S\left(\mathrm{in}^{3}\right)$:	13.14	$\mathrm{E}_{\text {min }}^{\prime}$ (psi):	470000				
1 (in ${ }^{4}$:	47.63			$=\mathrm{E}_{\text {min }}{ }^{*} \mathrm{C}_{\mathrm{M}}{ }^{*} \mathrm{C}_{t}$			
C_{p} :	$\mathrm{L}_{\mathrm{e}}(\mathrm{ft})$:	20.63	stud height	Bending C_{F} :	1.20		able 4A
	$\mathrm{L}_{\mathrm{e}} / \mathrm{d}$:	34.14		Axial C_{F} :	1.05		able 4A
	$\mathrm{F}_{\mathrm{CE}}(\mathrm{psi})$:	332	$=0.822^{*} \mathrm{E}_{\text {min }}^{\prime} /\left(\mathrm{L}_{\mathrm{e}} / \mathrm{d}\right)^{2}$	$\mathrm{C}_{\text {: }}$:	1.00		
	c:	0.8	per NDS 3.7.1.5	C_{t} :	1.00		

Bot. Plate Properties

b (in): 1.50

$\mathrm{F}_{\mathrm{C} \perp}$ (psi):	405	per NDS Table 4A	$\mathrm{F}_{\mathrm{c} \perp}^{\prime}(\mathrm{psi}):$	506
$\mathrm{C}_{\mathrm{b}}:$	1.25	per NDS 3.10.4	$\mathrm{F}_{\mathrm{al}}{ }^{*}{ }^{*} \mathrm{C}_{\mathrm{M}}{ }^{*} \mathrm{C}_{\mathrm{t}}{ }^{*} \mathrm{C}_{\mathrm{b}}$	
$(\mathrm{lb}):$	5505	$=\mathrm{F}_{\mathrm{c}}{ }^{*}{ }^{A}{ }^{4}$		

Project:	Kao Hong DADU
Client: \quad Chesmore Buck	

Date:	5/30/23	Job No:	23127.01
Designer:	XX	Sheet:	1
Checked By:			

Per IBC 2018 \& NDS 2018

Structure: Garage Double Height Wall
 Wall Line: Exterior Bearing Wall

Check Wall Axial and Flexural Capacities for Load Cases per IBC 1605.3.1

$$
\begin{array}{ll}
\mathrm{f}_{\mathrm{c}}=\mathrm{P}_{\mathrm{axial}} / \mathrm{A} & \mathrm{f}_{\mathrm{b}}=\mathrm{M}_{\mathrm{tot}} / \mathrm{S} \\
\mathrm{~F}_{\mathrm{C}}^{\prime}=\mathrm{F}_{\mathrm{C}}{ }^{*} \mathrm{C}_{\mathrm{D}}{ }^{*} \mathrm{C}_{\mathrm{M}}{ }^{*} \mathrm{C}_{\mathrm{t}}{ }^{*} \mathrm{C}_{\mathrm{F}}{ }^{*} \mathrm{C}_{\mathrm{P}} & \mathrm{~F}_{\mathrm{b}}^{\prime}=\mathrm{F}_{\mathrm{b}}{ }^{*} \mathrm{C}_{\mathrm{D}}{ }^{*} \mathrm{C}_{\mathrm{M}}{ }^{*} \mathrm{C}_{\mathrm{t}}{ }^{*} \mathrm{C}_{\mathrm{F}}{ }^{*} \mathrm{C}_{\mathrm{r}}
\end{array}
$$

$\mathrm{P}_{\text {Axial }}(\mathrm{lb})$	Bot. Plate $\mathrm{P}_{\mathrm{all}}$ Status	$\mathrm{f}_{\mathrm{c}}(\mathrm{psi})$	$\begin{aligned} & \mathrm{C}_{\mathrm{D}}: \text { NDS } \\ & \text { Table 2.3.2 } \end{aligned}$	C_{P}	F_{c} (psi)	$\begin{gathered} \mathrm{C}_{\mathrm{r}}: \mathrm{NDS} \\ 4.3 .9 \end{gathered}$	$\mathrm{M}_{\text {tot }}$ (lb-ft)	f_{b} (psi)	$\mathrm{F}_{\mathrm{b}}^{\prime}$ (psi)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { mereractI } \\ \text { on per } \\ \text { NDS } \\ 30-2 \\ \hline \end{array} \\ \hline \end{array}$	Deflection (in)	Wall Status
-oad Case: D + L												
213	<= Pall: OK	20	1.00	0.23	313	1.15	16	14	1173	0.06	0.01	OK
Load Case: D + S												
533	<= Pall: OK	49	1.15	0.20	316	1.15	39	36	1349	0.16	0.03	OK
Load Case: D + 0.75(L + S												
453	<= Pall: OK	42	1.15	0.20	316	1.15	33	30	1349	0.13	0.03	OK
Load Case: D + 0.6W												
213	<= Pall: OK	20	1.60	0.15	320	1.25	866	791	2040	0.42	0.75	OK
Load Case: D + 0.75(L+S + 0.6W)												
453	<= Pall: OK	42	1.60	0.15	320	1.15	671	613	1877	0.39	0.58	OK
Load Case: (1.0 + 0.14Sds) D + 0.7E												
243	<= Pall: OK	22	1.60	0.15	320	1.15	266	243	1877	0.14	0.32	OK
Load Case: (1.0 + 0.14Sds) D + 0.75(L + S + 0.7E)												
517	<= Pall: OK	48	1.60	0.15	320	1.15	224	204	1877	0.15	0.26	OK

Wall: 2×8 @ 16 in. o.c. is acceptable

Project:	Kao Hong DADU
Client:	Chesmore Buck

	Date: $5 / 30 / 23$		
Designer:	Job No:	23127.01	
Checked By:			

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

LATERAL DESIGN - DADU

Wind Loads - Main Wind Force Resisting System

Per IBC 2021 \& ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft
Wind Load Criteria

Risk Category: II
Basic Wind Speed:
Exposure Category: C Section 26.7.3
K_{zt} : $\mathbf{1 . 0 0}$ Section 26.8
$\mathrm{K}_{\mathrm{e}}: \mathbf{0 . 9 9 8 7}$ Section 26.10.1
$\mathrm{K}_{\mathrm{d}}: \mathbf{0 . 8 5}$ Section 26.6
G: 0.85 Section 26.11
Wall Height: 21.0 ft
Parapet Elevation: 23.0 ft

Wall Pressures:

L/B Ratio:

Short Dimension: 31.0 ft Long Dimension: $\quad 36.3 \mathrm{ft}$
Transverse Wind L/B: $\quad 0.86$
Longitudinal Wind L/B: $\quad 1.17$

*NOTE: INTERNAL BUILDING PRESSURE CANCEL EACH OTHER OUT IN ENCLOSED BUILDING

K_{h} \& $\mathrm{K}_{\mathrm{z}}:$	0.911	At Top of Wall
$\mathrm{K}_{\mathrm{z}}:$	0.85	0 ft to 15 ft
$\mathrm{Kp}:$	0.93	At Top of Parapet

Transverse
Wind Direction
Top of Wall: 20.6 psf
0 ft to 15 ft Wall: 19.7 psf

Longitudinal
Wind Direction
20.1 psf
19.2 psf

elevation
ASCE EQ 27.3-1
ASCE EQ 27.3-1

Parapet: 47.5 psf (Parapet) ASCE EQ 27.3-3
*Enveloped Leeward and Windward Pressure
*All Values Ultimate (multiply $\times 0.6$ for ASD)

Project:	Hong \& Kao Residence	Date:	$5 / 30 / 23$	Job No:
		Design\#\#\#\#\#		
Client:	Chesmore Buck	Checked By:	Sheet:	2

Wind Loads - Main Wind Force Resisting System (Cont.)

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

Roof Pressure:

Roof Overhang (PSF)

$$
P_{\text {ovh }}:-34.4 \mathrm{psf} \quad 0.0 \mathrm{psf}
$$

Minimum Total Projected Horizontal Pressure (PSF)
8.0 psf

ASCE 27.1.5

Project:	Hong \& Kao Residence	Date:	$5 / 30 / 23$
		Designer:	JJS

Wind Loads - Components and Cladding

Per IBC 2021 \& ASCE 7-16 Chapter 30.3 \& 30.5 - Part 1 and Part 3 Enclosed Buildings With h<160 FT

Wind Load Criteria

Risk Category: II
II
Table 1.5-1
Basic Wind Speed: 97 mph
Exposure Category: C Section 26.7.3
$\begin{array}{lll}\mathrm{K}_{\mathrm{zt}}: & \mathbf{1 . 0 0} & \text { Section } 26.8 \\ \mathrm{~K}_{\mathrm{e}}: & \mathbf{1 . 0 0} & \text { Section 26.10.1 }\end{array}$
$\begin{array}{lll}\mathrm{K}_{\mathrm{d}}: & 0.85 \text { Section } 26.6\end{array}$
Roof Type: Flat
Roof Slope: $\mathbf{0 . 0 : 1 2}=0.0$ DEG
Mean Roof Height: $\quad 21.0 \mathrm{ft}$ Wall Height: 21.0 ft

Parapet Height:
2.0 ft

Zone Dimensions

Least Horiz. BLDG Dimension:
31 ft
a: 3.1 ft
2a: 6.2 ft

Wall Pressures

	0.850	Table 26.10-1	0-15 ft (PART 3)
K	0.911	Table 26.10-1	
Effective Wind Area:	Zone 4:	$147 \mathrm{ft}{ }^{\wedge} 2$	
	Zone 5:	$147 \mathrm{ft}{ }^{\text {2 }}$	

	At Top of Wall			FT TO 15 FT ($>60^{\prime} \mathrm{bldg}$)
Load Case	4	5	4	5
1	16.7	16.7		

*Negative indicates pressure away from surface *Okay to interpolate between 15 ft and top of wall (>60' bldg) *All Values Ultimate (multiply x 0.6 for ASD)

Roof Pressures
$\mathrm{K}_{\mathrm{h}}: 0.911$ Table 26.10-1
Overhang?: No

Parapet Pressures
*Negative indicates pressure away from surface
*All Values Ultimate (multiply x0.6 for ASD)
Zone 4 Zone 5
Windward: $46.1 \quad 53.6$
Leeward: $35.0 \quad 36.6$

Project: Iong \& Kao Residenc	Date: 5/30/23	Job No:	23127.01
Designer: JJS		Sheet:	4
Client: Chesmore Buck	ed By:		

Wind Loads - Components and Cladding (Cont.)

ASCE 7-16 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

ASCE FIG 30.3-2A
FLAT/GABLE ROOF $\boldsymbol{\theta}$ <= $\mathbf{7}^{\circ}$

ASCE FIG 30.3-2E to I
HIP ROOF $7^{\circ}<\theta<=45^{\circ}$

ASCE FIG 30.3-5B
Monoslope ROOF $10^{\circ}<\theta<=30^{\circ}$

ASCE FIG 30.3-2B to D GABLE ROOF $\mathbf{7}^{\circ}<\boldsymbol{\theta}<=45^{\circ}$

ASCE FIG 30.3-5A
Monoslope ROOF $3^{\circ}<\theta<=10^{\circ}$

ASCE FIG 30.5-1
ROOF H > 60ft, $\boldsymbol{\theta}<=\mathbf{7}^{\circ}$

Project: Iong \& Kao Residenc	Date:	5/30/23	Job No:	23127.01
	Designer:	JJS	Sheet:	5
Client: Chesmore Buck	Checked By:			

Structure: Hong-Koa Residence - DADU
Address: 5425 W. Mercer Way Mercer Island, WA 98040
Latitude: 47.5540 Longitude: -122.2320

Structure Classification

Risk Category : II per ASCE Table 1.5-1

Seismic Force-Resisting System: Light-Framed Wood Walls Sheathed with Structural Panels

$\mathrm{R}:$	$\mathbf{6 1 1 2}$	per ASCE Table 12.2-1
$\mathrm{W}_{\mathrm{o}}:$	$\mathbf{3}$	per ASCE Table 12.2-1
$\mathrm{C}_{\mathrm{d}}:$	$\mathbf{4}$	per ASCE Table 12.2-1
$\mathrm{h}_{\mathrm{n}}(\mathrm{ft}):$	$\mathbf{2 1 . 0 0}$	height above the base to the highest level of the structure

Site Ground Motion

Reg. Structure/5 Stories Max:	Yes	Sds $(\max)=1.0$	Per ASCE 12.8.1.3	
$\mathrm{S}_{1}(\mathrm{~g}-\mathrm{sec}):$	0.51	$\mathrm{~S}_{\mathrm{S}}(\mathrm{g}-\mathrm{sec}):$	1.45	
Site Class:	D	Assumed Value	per ASCE 11.4.3	

ASCE 11.4.8 Exception 2 Used

$\mathrm{F}_{\mathrm{V}} \mathbf{1 . 7 9}$		
$\mathrm{S}_{\mathrm{M} 1}(\mathrm{~g}-\mathrm{sec}):$		
$\mathrm{S}_{\mathrm{D} 1}(\mathrm{~g}-\mathrm{sec}):$	0.61	
$\mathrm{SDC}:$	D	
$\mathrm{I}_{\mathrm{E}}:$	$\mathbf{1 . 0 0}$	per ASCE 11.6
per ASCE Table 1.5-2		

Fundamental Period per ASCE 12.8.2

Period Method:	Approximate Fundamental Period Structure Type: All Other Structural Systems	
$\mathrm{T}_{\mathrm{L}}(\mathrm{sec}):$	6.00	ASCE Figures 22-14 through 22-17
$\mathrm{T}_{\mathrm{s}}:$	0.52	
$\mathrm{Ta}(\mathrm{sec}):$	0.20	Ct^{*} hnx per ASCE Eq. 12.8-7
$\mathrm{T}_{\text {use }}(\mathrm{sec}):$	0.20	$-<=\mathrm{TL}$

Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

$$
\begin{aligned}
& \begin{array}{rll}
C_{s}: & 0.18 & =S_{D S} /\left(R / I_{E}\right) \text { per ASCE Eq. 12.8-2 } \\
C_{s-m a x}: & 0.47 & =S_{D 1} /\left(T_{a}{ }^{*} R / I_{E}\right) \text { for } T<=T_{L} \text { per ASCE Eq. 12.8-3 }
\end{array} \\
& \mathrm{C}_{\mathrm{s}-\mathrm{max}} \text { : } \quad--\quad=\mathrm{S}_{\mathrm{D} 1}{ }^{*} \mathrm{~T}_{\mathrm{L}} /\left(\mathrm{T}_{\mathrm{a}}{ }^{2}{ }^{*} \mathrm{R} / I_{\mathrm{E}}\right) \text { for } \mathrm{T}>\mathrm{T}_{\mathrm{L}} \text { per ASCE Eq. 12.8-4 } \\
& \mathrm{C}_{\mathrm{s}-\text { min }}: \quad 0.05 \text { per ASCE Eq. 12.8-5 } \\
& \mathrm{C}_{\text {s-min }}: \quad-\quad=0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / I_{E}\right) \text { for } \mathrm{S}_{1}=>0.6 \mathrm{~g} \text { per ASCE Eq. 12.8-6 } \\
& \mathrm{C}_{\text {s-use }}: \quad 0.18 \\
& \text { V : } 0.178 \mathrm{~W}=\mathrm{C}_{\text {s-use }} \text { * } \mathrm{W} \text { per ASCE Eq. 12.8-1 }
\end{aligned}
$$

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	1.16	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.20	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{vx}} \mathrm{~V} \text { per ASCE Eq. 12.8-11 }
$$

$C_{v x}=\left(w_{x} h_{x}{ }^{k}\right) /\left(S w_{i} h_{i}{ }^{k}\right)$ per ASCE Eq. 12.8-12

Level	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{w}_{\mathrm{x}}(\mathrm{k})$	\% of $\mathrm{W}_{\text {total }}$	$\mathrm{w}_{\mathrm{x}}{ }^{\text {k }} \mathrm{h}^{\text {k }}$	C_{Vx} (\%)	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{V}_{\mathrm{x}}(\mathrm{k})$
Roof	21.00	27.42	45.4\%	575.8	63.6\%	6.85	6.85
Upper Floor	10.00	32.99	54.6\%	329.9	36.4\%	3.93	10.78
Total WT (k): 60.40			Sum: 906				
$\mathrm{C}_{\text {s-use }}$:		0.178					
		10.78	per ASCE 12.8.1				

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
F_{p x} & =\left(S F_{i} / S_{w_{i}}\right)^{*} w_{p x} \text { per ASCE Eq 12.10-1 } \\
F_{p x-\text { max }} & =0.4^{*} S_{D s} I_{E} I^{*} w_{p x} \text { per per ASCE 12.10.1.1 } \\
F_{p x-m i n} & =0.2^{*} S_{D s}{ }^{*} I_{E}^{*} w_{p x} \text { per per ASCE 12.10.1.1 }
\end{aligned}
$$

Diaphragm/Story

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
Roof	27.42	27.42	6.85	6.85	6.85	
Upper Floor	32.99	60.40	3.93	10.78	7.65	$=\mathrm{Fp}-\mathrm{min}$

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof

Sds $=$	1.166
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	17.25

Shear Wall Line Information

SW Mark	$L_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\text {wp }}$ (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID $\quad \mathrm{N}$	8.00	-	\bullet	-	-	-	-	-	-	-
SW Segment N. 1	8.00	11.00	1.38	HF \#2	0.43	Interstory	11.00	10.0	4.0	15.0
SW GRID C	20.50	-	-	-	-	-	-	-	-	-
SW Segment C. 1	16.25	11.00	0.68	HF \#2	0.43	Interstory	11.00	10.0	18.0	15.0
SW Segment C. 2	4.25	11.00	2.59	HF \#2	0.43	Interstory	11.00	10.0	18.0	15.0
SW GRID S	26.00	-	-	-	-	-	-	-	-	-
SW Segment S. 1	26.00	21.00	0.81	HF \#2	0.43	Base	21.00	10.0	14.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-

$\left.\begin{array}{l}\text { Shear Wall Loads and Summary } \\ \begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { SW Mark } & \begin{array}{c}\text { EQ (Ib) Wall } \\ \text { (ULT) }\end{array} & \begin{array}{c}\text { Wind (Ib) Wall } \\ \text { (ULT) }\end{array} & \text { Wall DL (lb) }\end{array} \\ \hline \text { Wall DL (Ib) } \\ \text { End 1 }\end{array} \begin{array}{c}\text { Wall DL (Ib) } \\ \text { End 2 }\end{array}\right)$

Quantum Consulting Engineers LLC
1511 Third Avenue, Suite 323
Seattle, WA 98101

Project: Hong and Kao Residenc	Date:	$5 / 30 / 23$	Job No:	23127.01
	Designer:	JJS	Sheet:	1
Client: Chesmore Buck Architeı	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof
EQ ϕ SDPWS 4.1.4.1 WIND ϕ SDPWS 4.1.4.2

Shear Wall Schedule		$\phi_{\mathrm{D}}=$		0.5	$\phi_{\mathrm{D}}=0.8$		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	LRFD Wind SW Capacity (plf)	Sheathing Shear Stiffness, $\mathbf{G a}_{\mathrm{a}}$ (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32', 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
N. 1	61	1.00	66	60	65	66	SW-6	435	OK	Seismic
C. 1	167	1.00	180	100	108	180	SW-6	435	OK	Seismic
C. 2	167	0.93	194	100	116	194	SW-6	435	OK	Seismic
S. 1	113	1.00	122	61	66	122	SW-6	435	OK	Seismic

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
Determine Shear Wall Overturning Moment Lever Arm
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input M_{Ot} Lever Arm (ft)
N. 1	8.00	7.79	2.67\%	No	
C. 1	16.25	16.04	1.30\%	No	
C. 2	4.25	4.04	5.15\%	No	
				No	
S. 1	26.00	25.52	1.90\%	No	

Project: Hong and Kao Residenc	Date:	$5 / 30 / 23$	Job No:	23127.01
	Designer:	JJS	Sheet:	3
Client: Chesmore Buck Architeı	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
 Floor Level: Roof

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (Ib)	End 2 Dead (Ib)
N. 1	472		472	397		397	680	680
C. 1	1288		1288	661		661	3088	3088
C. 2	1288		1288	661		661	808	808
S. 1	1662		1662	769		769	5460	5460

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
N. 1	11	-175	11	-175	-175	CS16 (1705)	-1705	OK
C. 1	1191	60	1191	60	60	CS16 (1705)	-1705	OK
C. 2	-177	-936	-177	-936	-936	CS16 (1705)	-1705	OK
S. 1	2507	722	2507	722	722	HDU2 (3075DF,2215HF)	-2215	OK

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Upper Floor

Sds $=$	1.166
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	17.25

Shear Wall Line Information

SW Mark	$\mathrm{L}_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{w p}(f t)$	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID N	8.00	-	-	-	-	-	-	-	-	-
SW Segment N. 1	8.00	10.00	1.25	HF \#2	0.43	Base	10.00	12.0	4.0	15.0
SW GRID C	28.75	-	-	-	-	-	-	-	-	-
SW Segment C. 1	8.50	10.00	1.18	HF \#2	0.43	Base	10.00	12.0	18.0	15.0
SW Segment C. 2	12.25	10.00	0.82	HF \#2	0.43	Base	10.00	12.0	18.0	15.0
SW Segment C. 3	8.00	10.00	1.25	HF \#2	0.43	Base	10.00	12.0	18.0	15.0
SW GRID S	8.50	-	-	-	-	-	-	-	-	-
SW Segment S. 1	8.50	10.00	1.18	HF \#2	0.43	Base	10.00	12.0	14.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-

SW Mark		$\begin{array}{\|c\|} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \\ \hline \hline \end{array}$	Wind (Ib) Wall (ULT)	Wall DL (b)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 2 \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID	N	1540	1357	-	-	-	-	-	-
SW Segment	N. 1	1540	1357	1440			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID	C	5390	5787				-	-	-
SW Segment	C. 1	1594	1711	3315			SW-6	2	HDU4 (4565DF, 3285HF)
SW Segment	C. 2	2297	2466	4778			SW-6	2	HDU2 (3075DF,2215HF)
SW Segment	C. 3	1500	1610	3120			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID	S	3850	4470				-	-	-
SW Segment	S. 1	3850	4470	2805		5522	SW-4	2	HDU4 (4565DF, 3285HF)
SW GRID							-	-	-

Project: Hong and Kao Residenc	Date:	$5 / 30 / 23$	Job No:	23127.01
	Designer:	JJS	Sheet:	1
Client: Chesmore Buck ArchiteI	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Upper Floor
EQ ϕ SDPWS 4.1.4. \quad WIND ϕ SDPWS 4.1.4.2

Shear Wall Schedule		$\phi_{D}=0.5$			$\phi_{\text {D }}=0.8$		
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Nominal Wind SW Capacity (plf)	$\left\lvert\, \begin{gathered} \text { LRFD Wind } \\ \text { SW } \\ \text { Capacity } \\ \text { (plf) } \end{gathered}\right.$	Sheathing Shear Stiffness, \mathbf{G}_{a} (lb/in)
SW-6	APA Rated, 15/32", 10d Common	6	870	435	870	696	14
SW-4	APA Rated, 15/32", 10d Common	4	1290	645	1290	1032	17
SW-3	APA Rated, 15/32", 10d Common	3	1680	840	1680	1344	19
SW-2	APA Rated, 15/32", 10d Common	2	2155	1078	2155	1724	23
2SW-4	APA Rated, 15/32", 10d Common	4	2580	1290	2580	2064	34
2SW-3	APA Rated, 15/32", 10d Common	3	3360	1680	3360	2688	38
2SW-2	APA Rated, 15/32", 10d Common	2	4310	2155	4310	3448	46

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
N. 1	193	1.00	207	170	182	207	SW-6	435	OK	Seismic
C. 1	187	1.00	202	201	216	202	SW-6	435	OK	Seismic
C. 2	187	1.00	202	201	216	202	SW-6	435	OK	Seismic
C. 3	187	1.00	202	201	216	202	SW-6	435	OK	Seismic
S. 1	453	1.00	487	526	565	487	SW-4	645	OK	Seismic

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
Determine Shear Wall Overturning Moment Lever Arm
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	$\begin{array}{\|c\|} \hline \text { Calculated } \\ \text { Lever Arm (ft) } \end{array}$	\% Different	Override Wall Length	User Input M_{Ot} Lever Arm (ft)
N. 1	8.00	7.52	6.44\%	No	
				No	
				No	
C1	850	802			
C. 2	${ }_{1} 12.25$	$\frac{8.027}{11.77}$	4.12\%	No	
c. 3	8.00	7.52	6.44\%	No	
S. 1	8.50	8.02	6.04\%	No	

Project: Hong and Kao Residenc

	Designer:	JJS	Sheet:	3
Client: Chesmore Buck Architer	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence Floor Level: Upper Floor

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (Ib)	Seismic Tension Total (Ib)	Wind Tension (lb)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (b)	End 2 Dead (lb)
N. 1	1348	472	1819	1018	397	1415	720	720
C. 1	1312	1705	3017	1208	875	2083	1658	1658
C. 2	1312	1288	2600	1208	661	1869	2389	2389
C. 3	1312		1312	1208		1208	1560	1560
S. 1	3171		3171	3155		3155	1403	6925

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
N. 1	-983	-1505	-983	-1505	-1505	HDU2 (3075DF,2215HF)	-2215	OK
C. 1	-1088	-2293	-1088	-2293	-2293	HDU4 (4565DF, 3285HF)	-3285	OK
C. 2	-436	-1557	-436	-1557	-1557	HDU2 (3075DF,2215HF)	-2215	OK
C. 3	-272	-631	-272	-631	-631	HDU2 (3075DF,2215HF)	-2215	OK
S. 1	-2314	-2558	999	-146	-2558	HDU4 (4565DF, 3285HF)	-3285	OK

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof

Sds $=$	1.166
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	17.25

Shear Wall Line Information

SW Mark	$L_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\text {wp }}$ (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID E	15.75	-	-	-	-	-	-	-	-	-
SW Segment E. 1	3.50	11.00	3.14	HF \#2	0.43	Interstory	11.00	10.0	1.0	15.0
E. 2	4.00	11.00	2.75	HF \#2	0.43	Interstory	11.00	10.0	1.0	15.0
E. 3	8.25	11.00	1.33	HF \#2	0.43	Interstory	11.00	10.0	1.0	15.0
SW GRID W	28.50	-	-	,	-	-	-	-	-	-
SW Segment W. 1	28.50	11.00	0.39	HF \#2	0.43	Interstory	11.00	10.0	1.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

SW Mark		$\begin{gathered} \hline \text { EQ (Ib) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (b)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 2 \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID	E	3425	1935	-	-	-	-	-	-
SW Segment	E. 1	761	430	438			SW-6	2	CS16 (1705)
	E. 2	870	491	500			SW-6	2	CS16 (1705)
	E. 3	1794	1013	1031			SW-6	2	CS16 (1705)
SW GRID	W	3425	1935				-	-	-
SW Segment	W. 1	3425	1935	3563			SW-6	2	CS16 (1705)
SW GRID							-	-	-
SW GRID							-	-	-

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof
EQ ϕ SDPWS 4.1.4.1 WIND ϕ SDPWS 4.1.4.2

Shear Wall Schedule (LRFD)
Shear Wall Type

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E. 1	217	0.86	273	123	154	273	SW-6	435	OK	Seismic
E. 2	217	0.91	258	123	146	258	SW-6	435	OK	Seismic
E. 3	217	1.00	234	123	132	234	SW-6	435	OK	Seismic
W. 1	120	1.00	129	68	73	129	SW-6	435	OK	Seismic

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
Determine Shear Wall Overturning Moment Lever Arm
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input M_{Ot} Lever Arm (ft)
E. 1	3.50	3.29	6.33\%	No	
E. 2	4.00	3.79	5.49\%	No	
E. 3	8.25	8.04	2.59\%	No	
W. 1	28.50	28.29	0.74\%	No	

Project: Hong and Kao Residenc	Date:	$5 / 30 / 23$	Job No:	23127.01
	Designer:	JJS	Sheet:	3
Client: Chesmore Buck Architeı	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof

SW Segment Mark	Seismic Tension (lb)	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (Ib)	End 2 Dead (lb)
E. 1	1674		1674	811		811	219	219
E. 2	1674		1674	811		811	250	250
E. 3	1674		1674	811		811	516	516
W. 1	925		925	448		448	1781	1781

SW Segment Mark	Wind End 1 Eq. 16-15	$\begin{aligned} & \text { EQ End } 1 \\ & \text { Eq. 16-16 } \end{aligned}$	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	Holdown Capacity (lb)	Status
E. 1	-679	-1579	-679	-1579	-1579	CS16 (1705)	-1705	OK
E. 2	-661	-1565	-661	-1565	-1565	CS16 (1705)	-1705	OK
E. 3	-501	-1449	-501	-1449	-1449	CS16 (1705)	-1705	OK
W. 1	621	-147	621	-147	-147	CS16 (1705)	-1705	OK

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof

Sds $=$	1.166
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	17.25

Shear Wall Line Information

SW Mark	$L_{\text {sw }}(\mathrm{ft})$	Wall Pier $h_{\text {wp }}$ (ft)	Aspect Ratio	Wall Framing Species	Specific Gravity G	Interstory or Base?	$\mathrm{h}_{\text {sw }}(\mathrm{ft})$	Wall Wt. (psf)	Roof/Floor Trib. (ft)	Roof/Floor Wt. (psf)
SW GRID E	7.50	-	-	-	-	-	-	-	-	-
SW Segment E. 1	3.50	10.00	2.86	HF \#2	0.43	Base	10.00	10.0	1.0	15.0
SW Segment E. 2	4.00	10.00	2.50	HF \#2	0.43	Base	10.00	10.0	1.0	15.0
SW GRID W	28.50	-	-	,	-	-	-	-	-	-
SW Segment W. 1	28.50	10.00	0.35	HF \#2	0.43	Base	10.00	10.0	1.0	15.0
SW GRID	0.00	-	-	-	-	-	-	-	-	-
SW GRID	0.00	-	-	-	-	-	-	-	-	-

SW Mark		$\begin{gathered} \hline \text { EQ (Ib) Wall } \\ \text { (ULT) } \\ \hline \hline \end{gathered}$	Wind (Ib) Wall (ULT)	Wall DL (b)	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wall DL (lb) } \\ \text { End } 2 \\ \hline \end{gathered}$	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID	E	5390	5452	-	-	-	-	-	-
SW Segment	E. 1	2515	2544	403			SW-2	4	HDU11 (4) Studs (9335DF, 8030HF)
SW Segment	E. 2	2875	2908	460			SW-2	4	HDU11 (4) Studs (9335DF, 8030HF)
SW GRID	W	5390	5452				-	-	-
SW Segment	W. 1	5390	5452	3278			SW-6	2	HDU2 (3075DF,2215HF)
SW GRID							-	-	-
SW GRID							-	-	-

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof
EQ ϕ SDPWS 4.1.4.1 WIND ϕ SDPWS 4.1.4.2

Shear Wall Schedule (LRFD)
Shear Wall Type

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Controlling Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
E. 1	719	0.89	865	727	875	865	SW-2	1077.5	OK	Seismic
E. 2	719	0.94	824	727	834	824	SW-2	1077.5	OK	Seismic
W. 1	189	1.00	203	191	206	203	SW-6	435	OK	Seismic

*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN
Determine Shear Wall Overturning Moment Lever Arm
SHEAR WALL CAPACITY BETWEEN WIND \& EQ

SW Segment Mark	Wall Length Lever Arm (ft)	Calculated Lever Arm (ft)	\% Different	Override Wall Length	User Input M_{Ot} Lever Arm (ft)
E. 1	3.50	2.76	26.79\%	No	
E. 2	4.00	3.26	22.68\%	No	
				No	
W. 1	28.50	28.02	1.73\%	No	

Project: Hong and Kao Residenc	Date:	$5 / 30 / 23$	Job No:	23127.01
	Designer:	JJS	Sheet:	3
Client: Chesmore Buck Architeı	Checked By:	XX		

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2021, ASCE 7-16, SDPWS 2021 \& NDS 2018

Structure: Kao and Hong Residence
Floor Level: Roof

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (b)	ASD Wind Tension Above (lb)	Wind Tension Total (lb)	End 1 Dead (Ib)	End 2 Dead (Ib)
E. 1	5031	1674	6705	4362	811	5172	201	201
E. 2	5031	1674	6705	4362	811	5172	230	230
W. 1	1324	925	2249	1148	448	1596	1639	1639

SW Segment Mark	Wind End 1 Eq. 16-15	EQ End 1 Eq. 16-16	Wind End 2 Eq. 16-15	EQ End 2 Eq. 16-16	Controlling Ten. Load (lb)	Holdown	$\begin{gathered} \text { Holdown } \\ \text { Capacity (lb) } \end{gathered}$	Status
E. 1	-5052	-6617	-5052	-6617	-6617	HDU11 (4) Studs (9335DF, 8030H	-8030	OK
E. 2	-5034	-6605	-5034	-6605	-6605	HDU11 (4) Studs (9335DF, 8030H	-8030	OK
W. 1	-613	-1533	-613	-1533	-1533	HDU2 (3075DF,2215HF)	-2215	OK

HONG AND KAO RESIDENCE
5425 W. Mercer Way
Mercer Island, WA 98040

Quantum Job Number: 23127.01

FOUNDATION DESIGN - DADU

Passive Pressure: 350pcf

Assume 18" Depth (Frost Depth)

Resist Force= Length of house*depth ${ }^{2 *}$ Passive pressure/2
N-S direction $=(35.5 \mathrm{ft} * 3 \text { wall lines })^{*} 1.5 \mathrm{ft}^{2} 350 \mathrm{pcf} / 2$ $=41.9 \mathrm{kips}$
E-W direction=(38ft*2 wall lines)*1.5ft2350pcf/2 $=29.9 \mathrm{kips}$

1. Top of Plan:

4'-6" Trib
Ext Wall+ Veneer
Roof+Res+Parking
$D+L=1260+540$ plf 1800 plf
3dia Pile: 12k cap
6'-6" spacing
3. Below Stairs 10'-0" Trib
Int Wall
Roof Res Parking
$D+L=1760+1200$ plf 2960 plf
3dia Pile: 12k cap 4' spacing
5. Bottom of Plan

8'-6" Trib
Ext Wall
Roof Res Parking
$D+L=1576+$ 1020 2596 plf 3dia Pile: 12k cap 4'-6" spacing
2.Under Upper Beam 14'-3" Trib
$D+L=1623+713$ plf 2335 plf
3dia Pile: 12k cap 5' spacing

Level Loading
Roof 18/30
Upper Floor 15/40
Parking 90/50
GB 340/0
Exterior Wall 190/0
Veneer 722/0
 $\mathrm{D}+\mathrm{L}=2283+1710 \mathrm{plf}$ 3993 plf
3dia Pile: 12k cap 3' spacing
6. 2'-0" Trib

Ext Wall
Roof Res Parking
$D+L=776+240$ plf 1016 plf
3dia Pile: 12k cap
11'-9" spacing

$\frac{\text { Kao Hong DADU }}{\text { project }}$		$\frac{23127.01}{\text { job no. }}$
CHESMORE BUCK		
client		
design by:		
sheet no.		

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	1.16	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.20	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{vx}} \mathrm{~V} \text { per ASCE Eq. 12.8-11 }
$$

$C_{v x}=\left(w_{x} h_{x}{ }^{k}\right) /\left(S w_{i} h_{i}{ }^{k}\right)$ per ASCE Eq. 12.8-12

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
F_{p x} & =\left(S F_{i} / S w_{i}\right)^{*} w_{p x} \text { per ASCE Eq 12.10-1 } \\
F_{p x-m a x} & =0.4^{*} S_{D S}{ }^{*} I_{E}^{*} w_{p x} \text { per per ASCE 12.10.1.1 } \\
F_{p x-\min } & =0.2^{*} S_{D S}{ }^{*} I_{E}{ }^{*} w_{p x} \text { per per ASCE 12.10.1.1 }
\end{aligned}
$$

Diaphragm/Story

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
Roof	27.42	27.42	15.91	15.91	$\mathbf{1 2 . 7 2}$	$=\mathrm{Fp}-\mathrm{max}$
Upper Floor	32.99	60.40	9.78	25.69	$\mathbf{1 4 . 0 3}$	
Foundation	106.65	167.05	4.12	29.81	$\mathbf{2 4 . 7 4}$	$=$ Fp-min

Design:

$$
\begin{aligned}
\mathrm{b} & =12 \mathrm{in} . \\
\mathrm{d} & =4.69 \mathrm{in} . \\
\mathrm{w}_{\mathrm{u}} & =191 \mathrm{psf}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{s}}=$	$0.31 \mathrm{in}^{2} / \mathrm{ft}$.	$\rho=0.0055$
$\mathrm{~A}_{\mathrm{s}} \min =$	$0.15 \mathrm{in}^{2} / \mathrm{ft}$.	OK ACI 9.6.1.2
$\mathrm{A}_{\mathrm{s}} \max =$	$1.02 \mathrm{in}^{2} / \mathrm{ft}$.	OK (Tension Ctrl'd Section)
$\mathrm{A}_{\mathrm{s}}{ }^{\prime}=$	$0.31 \mathrm{in}^{2} / \mathrm{ft}$.	$\rho^{\prime}=0.0055$

Check Shear

$\mathrm{V}_{\mathrm{u}} @$ 'd' $=$	$1.36 \mathrm{kips} / \mathrm{ft}$.		ACI 7.4.3.2
$\phi \mathrm{Vc}=$	$5.34 \mathrm{kips} / \mathrm{ft}$.	OK	ACI 22.5.5.1 (Simple)
$\phi \mathrm{Vc}=$	$5.64 \mathrm{kips} / \mathrm{ft}$.	OK	ACI 22.5.5.1 (Detailed)

Check Flexure

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =64.5 \mathrm{k} \text {-in. } / \mathrm{ft} . \\
\phi \mathrm{M}_{\mathrm{n}} & =74.7 \mathrm{k} \text {-in. } / \mathrm{ft} . \quad \mathrm{OK}
\end{aligned}
$$

Check Deflection

$\mathrm{E}_{\text {conc }}=3605 \mathrm{ksi}$	ACI 19.2.2.1	$\mathrm{M}_{\mathrm{a}}=$	48.1 k-in. / ft.	
$\mathrm{I}_{\mathrm{g}}=343 \mathrm{in}^{4}$		$\mathrm{f}_{\mathrm{r}}=$	474 psi	ACI 19.2.3.1
$\mathrm{I}_{\text {cr }}=37 \mathrm{in}^{4}$		$\mathrm{Mcr}_{\text {cr }}=$	46.5 k-in. / ft.	ACI 24.2.3.5b
$\mathrm{I}_{\mathrm{e}}=313 \mathrm{in}^{4}$	ACI 23.2.3.5a	$\mathrm{Ma}_{\mathrm{a}} / \mathrm{M}_{\mathrm{cr}}=$	1.03	
I for Deflection = $313 \mathrm{in}^{4}$				
Time Factor ($¢$)=	2.0 AC	ACI 24.2.4.1.3		
Deflection Factor $=$	1.57 AC	ACI 24.2.4.1.1		
LL Deflection =	0.05 in.	L/3570	Total LL (Regardle	of \% Sustained,
DL Deflection =	0.09 in .	L/1930		
Total Deflection =	0.30 in .	L/606	(DL+Sust. LL)xDe	actor + Remaini

Date: $5 / 30 / 23$		Job No:	23127.01
Designer:	JJS	Sheet:	2
Checked By:			

Check Flexure

$$
\begin{aligned}
\mathrm{Mu} & = & 268 \mathrm{k} \text {-in } \\
\Phi \mathrm{Mn} & = & 557 \mathrm{k} \text {-in } \quad \mathrm{OK}
\end{aligned}
$$

Check Serviceability

$\mathrm{z}_{\text {cracking }}=\quad 93$ kip-in. OK for tank \quad ACl 318-95 EQ 10-5

Check Deflection

$$
\begin{array}{rlrll}
\mathrm{E}_{\text {conc }} & =2881 \mathrm{ksi} & \text { ACI 19.2.2.1 } & \mathrm{Ma}= & 182 \mathrm{k} \text {-in. } \\
\mathrm{I}_{\mathrm{g}} & =4116 \mathrm{in}^{4} & & \mathrm{fr} & =375 \mathrm{psi}
\end{array} \text { ACI 19.2.3.1 }
$$

Time Factor $(\xi)=\quad 2.0 \quad \mathrm{ACl}$ 24.2.4.1.3

Deflection Factor $=1.83$ ACI 24.2.4.1.1

LL Deflection $=$	0.02 in.	L/7039	Total LL (Regardless of \% Sustained)
DL Deflection $=$	0.01 in.	L/14399	
Total Deflection $=$	$\mathbf{0 . 0 5} \mathrm{in}$.	L/2718	(DL+Sust. LL)xDefl. Factor + Remaining LL +DI

Project: Kao Hong Residence

Date:	$6 / 1 / 23$	Job No: 23127.01
Designer:	JJS	Sheet:
Checked By:		

